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Abstract

This paper studies the Great Merger Wave (GMW) of 1895-1904—the largest consoli-
dation event in U.S. history—to identify how Big Business affected American innova-
tion. Between 1880 and 1940, the U.S. experienced a golden age of breakthrough dis-
coveries in chemistry, electronics, and telecommunications that established its tech-
nological leadership. Using newly constructed data linking firms, patents, and in-
ventors, I show that consolidation substantially increased innovation. Among firms
already innovating before the GMW, consolidation led to an increase of 6 patents and
0.6 breakthroughs per year—roughly four-fold and six-fold increases, respectively.
Firms with no prior patents were more likely to begin innovating. The establish-
ment of corporate R&D laboratories served as a key mechanism driving these gains.
Building a matched inventor—firm panel, I show that lab-owning firms enjoyed a
productivity premium not due to inventor sorting, robust within size and technol-
ogy classes. To assess whether firm-level effects translated into broader technological
progress, I examine total patenting within technological domains. Overall, the GMW
increased breakthroughs by 13% between 1905 and 1940, with the largest gains in
science-based fields (30% increase).
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1 Introduction

Do large and dominant firms foster or hinder innovation? Large firms can better absorb
R&D fixed costs and undertake riskier, longer-term projects than smaller competitors,
and dominant firms may appropriate a greater share of their innovation returns (Schum-
peter 1942). On the other hand, these same firms may have weaker incentives to innovate
as disruptive technologies can threaten their existing market position (Arrow 1962). The
effect of large, market-dominant firms on innovation remains contested (Cohen 2010;
Bryan and Williams 2021) because major exogenous shifts in market structure are rare.
This paper exploits one such transformational episode.

The Great Merger Wave (GMW) of 1895-1904 was the largest merger and acquisition
event in U.S. economic history. At its peak in 1899, merged assets totaled 12.5 percent
of GNP—equivalent to US$(2024) 3.7 trillion today—as more than 2,600 firms combined
to form corporate giants that dominated their respective industries.! As Figure 1 shows,
this period also witnessed a remarkable rise in breakthrough innovation, especially in
tields like chemistry and electronics (Mowery and Rosenberg 1998; Field 2003; Gordon
2016). Influential narratives link America’s technological ascendance to the rise of Big
Business (Chandler 1977; Gordon 2016; DeLong 2022), but robust quantitative evidence
for a causal relationship has remained elusive due to identification challenges and data
limitations.

To investigate how GMW consolidation affected innovation, I employ three comple-
mentary empirical strategies. First, I estimate firm-level effects by comparing enter-
prises consolidating in the GMW to non-merging firms in the same broad technological
area. Consolidation led to large innovation surges, with patenting rising approximately
four-fold. Breakthrough discoveries, defined as patents that are both highly novel and
highly influential (Kelly et al. 2021), rose six-fold. Second, to examine the organiza-
tional mechanism behind these gains, I construct new inventor—firm linked data. In a
Abowd, Kramarz, and Margolis (1999) framework, I show that corporate R&D laborato-
ries—adopted at much higher rates by consolidating firms—conferred genuine produc-
tivity advantages, rather than simply attracting superior inventors. Third, I shift from
firm-level to aggregate innovation, studying the GMW's effects across entire technolog-
ical domains. Consolidation accelerated breakthroughs in fields closer to the scientific
frontier like chemistry and electronics, but slowed them farther away from it. The net
effect saw breakthroughs increase by 13 percent between 1905 and 1940.

The GMW provides a clean quasi-experiment for studying innovation by large and
dominant firms. A central identification concern is that consolidations might have been
selectively organized around firms with greater innovation potential. Instead, GMW
activity was driven by economic pressures and legal incentives unrelated to firms’ in-
novative prospects. The deflationary Depression of 1893-1897 triggered severe price
competition and overcapacity, as wholesale prices fell over 15 percent. Mergers concen-
trated in industries with low profit margins and high fixed costs (Lamoreaux 1985) and

1. The estimate is from Golbe and White (1988), adjusted for inflation. The second-largest M&A peak
was recorded in 2000 and valued at about US$(2024) 1.8 trillion (Huang, Yang, and Zhao 2025). Examples
of GMW consolidations include U.S. Steel (the largest U.S. corporation at the time and the first billion-
dollar company), DuPont, and International Harvester.
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Figure 1: Innovation and the Rise of Big Business, 1880-1940
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Note: The figure shows the relationship between the size of top firms and breakthrough innovation in the
U.S. from 1890 to 1940. The solid line represents the annual count of breakthrough innovations, which are
defined following Kelly et al. (2021) as patents that are both novel relative to predecessors and influential
for subsequent inventions (top decile of a text-based importance measure). The dashed line and diamond
marker show the share of total manufacturing assets and capital, respectively, controlled by the 100 largest
manufacturing firms. Concentration data comes from Kwon, Ma, and Zimmermann (2024) and the 1900
U.S. Census of Manufacturing.

involved a large number of firms.? Crucially, the legal environment made consolidation
necessary for firms seeking to restrict output. Court rulings beginning in 1895 clarified
that while the Sherman Act prohibited cartels, mergers remained legal (Bittlingmayer
1985). Because collusion was now illegal, firms had no alternative but to consolidate
if they wanted to control supply and stabilize prices (Stigler 1950).> Corporate R&D
was only nascent during this era, and the literature finds little evidence of technological
synergies playing a role in merger motivations. Empirically, this is reflected in flat pre-
consolidation innovation trends at levels of both GMW firms and technological sectors
(Figures 5 and 17) and limited selection on firm observables (Appendix Table C3).

This paper studies the innovation effects of what I term “bigness”—the joint increase
in firm size and market dominance resulting from consolidation. Because my identifi-
cation strategy exploits large-scale mergers, the estimated effects bundle together scale
and market power. This bundled treatment captures what is commonly meant by Big
Business in both contemporary policy debates and historical narratives, though other

2. In my data, the average consolidation involves 9.8 firms (Table 1). Recent evidence also highlights
the role of tariffs: industries more exposed to arbitrary tariff hikes saw greater merger activity (Ahumada
2025).

3. Four in five consolidations combined direct horizontal competitors only, with constituent firms over-
whelmingly active in the same technological area (Table 1).
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mechanisms may also operate.*

To conduct this analysis, I construct a rich new dataset linking corporate structure,
innovation outcomes, and individual inventors from 1875 to 1955. This contribution has
three main components. First, I digitize handwritten worksheets compiled by Nelson
(1959), which document mergers and acquisitions from 1895 to 1930, and National Re-
search Council surveys on corporate R&D laboratories (1920-1946). Second, drawing on
both existing sources and original data collection, I track over 23,000 ownership changes
and identify roughly 13,000 distinct enterprises with information on M&A activity, R&D
labs, and subsidiaries. To match these firms to innovation outcomes, I also reconcile over
137,000 unique firm assignees in the patent record. Third, I disambiguate one million
inventors, matching them to firms and corporate R&D labs. The resulting inventor-firm
panel spans eight decades and, to my knowledge, is the first to extend before 1940.°

Using this comprehensive dataset, I identify the firm-level effects of consolidation on
innovation through a difference-in-differences framework comparing firms that merged
during the GMW to select non-merging enterprises. The analysis distinguishes between
two margins of innovative activity. On the intensive margin, I examine consolidated
tirms with at least one patent before 1895. Crucially, I construct pre-merger innovation
outcomes for GMW firms as the sum of individual constituent firms” outcomes. Then,
I build the control group from medium-sized non-merging firms attested in the patent
record.® On the extensive margin, I analyze consolidated firms with no prior patenting
activity, comparing them to manufacturing enterprises of similar size listed in the 1900
Moody’s Manual of Industrial Securities that neither patented before 1895 nor participated
in the merger wave.

My first set of results shows that consolidated firms significantly increase their inno-
vative activity. Firms with pre-merger patents (intensive margin) experience sustained
innovation gains: patenting rises by approximately 6 patents annually, while break-
through innovations increase by 0.56 per year. Though these absolute increases may
seem modest, they reflect the generally low level of patenting by U.S. firms prior to 1900,
amounting to a 310 and 536 percent increase relative to pre-merger levels respectively.
Merging firms with no prior patenting activity (extensive margin) have a 23 percentage
point higher likelihood of starting to patent than control firms.

Corporate R&D laboratories emerge as the primary mechanism behind substantial
tirm-level innovation gains from consolidation. Consolidating firms substantially in-
creased their adoption of dedicated research infrastructure: firms on the intensive mar-
gin of patenting experience a 16 percentage point increase in the probability of estab-

4. Other dimensions sometimes associated with bigness include diversification, access to finance, and
managerial practices. Where feasible, I examine some of these additional channels. For instance, restricting
to purely horizontal consolidations (Appendix Figure C5) yields similar estimates, suggesting vertical
integration and diversification are not primary drivers.

5. The closest effort is by Akcigit et al. (2022), whose panel begins in 1940.

6. To address mechanical size differences, I reweight control firms to obtain a comparable distribution
of pre-1895 patent counts. Alternative inference approaches directly aggregate control firms rather than
reweighting them. I implement synthetic control methods (constructing optimal weighted combinations
of control firms for each treatment unit), synthetic difference-in-differences (Arkhangelsky et al. 2021),
and placebo mergers (randomly selecting control firm combinations matching treatment units’ pre-period
innovation). These approaches yield comparable estimates (Appendix D).
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lishing at least one laboratory, while the likelihood rises by 4.5 percentage points for
extensive margin firms. Because patent assignment may reflect a variety of relationships
between firm and inventor, I use the geographic proximity of inventors to laboratory
facilities to assess whether labs were substantively involved in innovation, building on
Nicholas (2009). Decomposing the sources of breakthrough innovation gains for inten-
sive margin firms reveals that approximately 50 percent comes from patents filed by
inventors within 50km (30mi) of an R&D lab—likely representing in-house research—
while an additional 30 percent comes from patents assigned to lab-owning firms but filed
by inventors beyond this radius, consistent with labs not only generating innovations di-
rectly but also playing a crucial role in evaluating and acquiring external inventions.

Yet a fundamental question remains: Do laboratories actually enhance firm-level in-
novative productivity, or do they merely attract superior talent and correlate with other
tirm characteristics? To investigate this, I extend the analysis beyond GMW firms, build-
ing a matched inventor—firm panel spanning 1875-1950. I first measure whether an
observational productivity premium exists, and find that lab-owning firms are more
innovative on average. Then, I estimate an Abowd, Kramarz, and Margolis (1999)—
AKM hereafter—decomposition that leverages inventor mobility to separate inventor
ability from firm-specific innovation productivity.” This approach allows me to explore
whether the observed premium reflects better inventors, more innovative firms choosing
to establish labs, or genuine productivity gains from laboratory organization.

My second set of results suggests that R&D labs provide substantial innovative pro-
ductivity advantages. Firm-specific effects account for approximately 33 percent of to-
tal explained variation in innovative productivity, with this share rising after 1905 as
corporate R&D become more common. Lab-owning firms exhibit significantly higher
firm productivity, but they do not employ systematically more productive inventors, re-
jecting the hypothesis that labs operated as a talent magnet. The laboratory premium
exists even when controlling for firm size and technological specialization, and firms
experience significant productivity gains following laboratory establishment. Likewise,
individual inventors become significantly more productive upon joining lab-owning en-
terprises, raising their quality-weighted output by about 0.12 log points. Together, these
results indicate that laboratories represented a fundamental organizational innovation,
transforming R&D from individual invention to systematic, collaborative research pro-
cesses that underpinned big firms’ outsized innovative output.

Firm-level innovation gains, however, may not translate into broader technological
progress if they merely reallocate inventive activity or are offset by negative spillovers
on other innovators. I therefore shift focus from individual firms to total innovation
within technological domains, examining how exposure to consolidations shaped ag-
gregate innovation. I distinguish between established technologies (those with at least
one patent by 1895) and emerging domains (those with no pre-1895 activity), where a
technology is defined as a group of related patent classes. For established technolo-
gies, I define consolidation exposure based on whether GMW firms held any patents
in that domain before 1895. I then compare technology by exposure status in standard

7. Bhaskarabhatla et al. (2021) perform a similar decomposition using contemporary data but do not
focus on the role of R&D laboratories.



difference-in-differences approach. For technological domains emerging after 1895, I
exploit the hierarchical structure of patent classification: emerging technologies inherit
exposure from their parent subclass if related pre-existing domains had GMW firm ac-
tivity before 1895. Using survival analysis, I model the timing of each domain’s first
patent and breakthrough, leveraging variation in GMW exposure within patent classes.

My third set of results indicates that consolidation raised breakthroughs by 13.2 per-
cent overall (1905-1940). Yet this average effect masks stark differences once technologies
are classified by historical closeness to the scientific frontier (science-based vs. non-
science-based).® In established, science-based fields, exposure generates large increases
in breakthrough patenting that persist even when excluding GMW firms, indicating pos-
itive spillovers. By contrast, in emerging, non-science-based fields, exposure significantly
reduces the likelihood of achieving a first breakthrough. Overall, back-of-the-envelope
calculations suggest that the GMW increased breakthroughs in science-based technolo-
gies by 30 percent, while reducing them in non-science-based domains by nearly 7 per-
cent.

Related literature and contribution. This paper contributes to several strands of lit-
erature. First, it advances the economic history of American innovation and economic
progress. While prior scholarship has carefully examined the determinants of the Great
Merger Wave—highlighting the roles of price competition, tariff policy, and legal incen-
tives in driving consolidation (Lamoreaux 1985; Bittlingmayer 1985)—its consequences
remain quantitatively unstudied. Despite influential historical narratives linking Big
Business to America’s technological ascendancy (Chandler 1977; Gordon 2016; DeLong
2022) and detailed case studies of firms such as DuPont, GE, and U.S. Steel (Hounshell
and Smith 1988; Jenkins 1975; Wise 1985), no work has causally identified how GMW
consolidation shaped innovation or indeed any major economic outcome. This paper
provides the first quantitative causal evidence that GMW consolidation drove techno-
logical progress, offering concrete support for prevailing narratives while challenging
skeptical views that question whether large and dominant corporations genuinely ad-
vanced American innovation (Noble 1979; Lamoreaux 2000). In doing so, it comple-
ments recent causal studies of other pivotal moments in U.S. innovation history, such as
the wartime research mobilization of the 1940s (Gross and Sampat 2023) and the Apollo
program (Kantor and Whalley 2023).

This contribution sits within the wider economic history of a period of exceptional
technological dynamism (Field 2003; 2013; Gordon 2016) and organizational transfor-
mation (Chandler 1959; 1977; 1990). This era witnessed dramatic changes in market
concentration (Kwon, Ma, and Zimmermann 2024), firm size (Collins and Preston 1961;

8. In practice, I group patent classes (CPC sections) in three categories based on widespread assess-
ments of their historical R&D intensity and reliance on scientific knowledge (Mowery and Rosenberg
1998; Chandler 1990; Arora et al. 2024). The science-based technology group encompasses chemistry, met-
allurgy, scientific instruments, computing, electronics, and telecommunications (CPC sections C, G and
H). The engineering and industrial technology group spans mechanical engineering, manufacturing pro-
cesses, vehicles, weapons, heating systems and cross-cutting technologies (CPC sections F, B and Y). The
infrastructure and consumer-oriented technology group includes agriculture, food processing, medical
devices, construction, textiles and apparel (CPC sections A, E and D).



Navin 1970), and the geography of innovation (Andrews and Whalley 2022). Prior re-
search has analyzed how historical shocks shaped innovation outcomes—World War
I (Moser and Voena 2012), the Great Depression (Nanda and Nicholas 2014; Babina,
Bernstein, and Mezzanotti 2023; Lampe and Moser 2016), the Bell breakup (Watzinger
et al. 2020; Watzinger and Schnitzer 2022), and migration flows (Moser, Voena, and
Waldinger 2014; Moser and San 2020)—as well as changes in inventor characteristics
and mobility (Nicholas 2010; Akcigit, Grigsby, and Nicholas 2017). By comparison, this
paper provides the first economy-wide quantitative assessment linking the GMW's cor-
porate consolidation to long-term innovation outcomes across U.S. manufacturing.

A second contribution is to the literature on corporate R&D laboratories as organiza-
tional drivers of innovation. How firms structure their innovation activities—whether
through internal development, external sourcing, or hybrid arrangements—has pro-
found implications for their innovative capacity (Arora, Fosfuri, and Gambardella 2001).
Prior work has explored the internal structure and management of firm R&D (Hender-
son and Clark 1990; Cohen and Levinthal 1990; Henderson and Cockburn 1996; Argyres
and Silverman 2004; Arora, Belenzon, and Rios 2011), spatial dynamics of innovation
(Bikard and Marx 2020), and scientist incentives within firms (Sauermann and Cohen
2010). Scholars have also documented the decline of corporate science in recent decades
(Arora, Belenzon, and Patacconi 2018). In economic history, the emergence of industrial
research is richly documented—Ilargely through observational evidence (Mowery 1983;
1984; Nicholas 2003; 2009; 2011)—with debate continuing over lab-formation drivers
(MacGarvie and Furman 2005; Arora et al. 2024) and productivity effects (Jewkes, Saw-
ers, and Stillerman 1958; Nicholas 2009; Hartog et al. 2024).

This paper demonstrates a causal link from bigness to R&D laboratory establish-
ment. It also shows that the widely observed lab premium reflects firm-level productiv-
ity effects rather than talent sorting. These findings provide robust quantitative support
for historical narratives portraying corporate labs as engines of American innovation
(Hughes 2004; Gertner 2013; DeLong 2022), in contrast to scholars who have questioned
whether laboratories genuinely drove technological progress (Reich 1985; Lamoreaux,
Sokoloff, and Sutthiphisal 2011; Gruber and Johnson 2019). This contribution rests on
the first application of an AKM model to historical inventor productivity: while AKM
models have been widely used to study labor earnings and, more recently, patenting
outcomes in post-1975 data (Bhaskarabhatla et al. 2021), no prior work has applied them
to historical innovation settings.

A third contribution is to the literature on firm size, market concentration, and in-
novation. Empirical studies provide extensive correlational evidence linking large and
dominant firms to innovation (Rosenberg 1990; Atkinson and Lind 2019; Braguinsky et
al. 2023), and antitrust debates often hinge on whether breaking up incumbents will spur
technological progress (Federico, Morton, and Shapiro 2020; Shapiro 2019). Yet the evi-
dence remains mixed (Cohen 2010; Bryan and Williams 2021). Even in similar settings,
scholars reach divergent conclusions about startup acquisitions (Phillips and Zhdanov
2013; Cunningham, Ederer, and Ma 2021; Fons-Rosen, Roldan-Blanco, and Schmitz
2021), horizontal competition (Blonigen and Pierce 2016; Haucap, Rasch, and Stiebale
2019; Kang 2023; Comanor and Scherer 2013), or oligopoly models (Goettler and Gor-
don 2011; Igami 2017; Igami and Uetake 2020). R&D itself can be defensive—patenting
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to deter entry rather than to advance the frontier (Gilbert and Newbery 1982; Argente
et al. 2020)—though spillovers often outweigh business-stealing motives (Griliches 1992;
Bloom, Schankerman, and Van Reenen 2013; Jones and Williams 1998; 2000; Jones and
Summers 2020).

This paper provides new causal evidence on the innovation effects of substantial in-
creases in firm size and market dominance. While I cannot directly test specific theoret-
ical models of market concentration and innovation—as precisely measuring industry-
level concentration in this historical setting remains challenging—the results offer im-
portant insights for this literature. The analysis reveals how the joint shock of increased
tirm size and market power affected innovation at both the firm and technology levels,
identifies corporate R&D laboratories as the key mechanism, and documents substantial
heterogeneity across the technology frontier.” Section 7 interprets these findings through
the lens of economic theory to assess which mechanisms they most plausibly reflect.

Finally, the findings also carry implications for current debates about concentra-
tion and innovation. Recent work documents defensive innovation strategies by mod-
ern incumbents that dampen creative destruction (Akcigit and Ates 2023; Fernandez-
Villaverde, Yu, and Zanetti 2025). The positive effects documented here—particularly
in science-based frontier domains—Ilikely reflect a historical context in which the U.S.
lacked substantial federal funding for research (Gruber and Johnson 2019) and Ameri-
can universities often lagged their European peers in key fields (Graham and Diamond
1997). In this environment, Big Business was arguably the only institution with both the
resources and incentives to sustain long-term R&D. While extrapolation must be cau-
tious, the results strongly suggest that the net effects of large and dominant firms on
innovation are highly heterogeneous and dependent on the knowledge base of affected
technologies.

Outline. The paper proceeds as follows. Section 2 describes the historical background.
Section 3 describes the data. Section 4 analyzes the GMW's firm-level effects. Section
5 investigates the R&D lab mechanism. Section 6 examines GMW’s aggregate impact.
Section 7 discusses the findings, and Section 8 concludes.

2 Historical Background

2.1 The Rise of Big Business and Industrial Consolidation

The late 19th century American economy had developed crucial preconditions for large-
scale industrial consolidation. National market integration via transcontinental rail-
roads and telegraph networks created unprecedented opportunities for economies of

9. Schumpeter (1942) emphasized the innovative advantages of large and dominant firms, while Arrow
(1962) argued the opposite, stressing their reluctance to disrupt existing rents. Modern growth theory
recognizes that both forces are at play, with the relationship between competition and innovation depend-
ing on conditions such as the starting level of competition or the appropriability of returns (Aghion and
Howitt 1992; Aghion et al. 2005; Aghion, Akcigit, and Howitt 2014; Spulber 2013).



scale (Donaldson and Hornbeck 2016). Institutional innovations—including general in-
corporation laws (Langlois 2023) and deepening capital markets (Baskin and Miranti
1997)—removed previous barriers to nationwide industrial enterprises.

The Sherman Act of 1890, designed to limit anti-competitive behavior, arguably accel-
erated industrial consolidation through judicial interpretations that incentivized mergers
(Bittlingmayer 1985). Before the Act, American industrialists had repeatedly attempted
to suppress what they viewed as destructive price competition through informal col-
lusive agreements, but these consistently failed due to strong incentives for individual
tirms to deviate from the arrangement (Ellison 1994). The 1895 E. C. Knight case (uphold-
ing the consolidation of the Sugar Trust) first tested the Sherman Act: it held that, while
price fixing was illegal, mergers were allowable under the Act. Crucially, judicial policy
after 1895 was directed at cartels and not mergers, creating an unregulated environment
for consolidation activity. This interpretation was reaffirmed in 1897 (Trans-Missouri case)
and 1898 (Addyston case). In February 1898, an editorial in the trade publication Iron Age
commenting on Addyston made explicit that the legal environment was incentivizing
mergers:

“The new decision is one which may gravely affect some of the arrangements
now in force among manufacturers in different lines, in which some control
over prices is sought by concerns otherwise acting independently in the con-
duct of their business. At first sight it looks as though this decision must drive
them to actual consolidation, which is really more apt to be prejudicial to public
interests than the losses and temporary agreements which it condemns.”!’

At the same time, the Depression of 1893-1897 led to substantial deflation and trig-
gered severe price competition, making consolidation an increasingly attractive option
to restrict supply under the new legal environment. Wholesale prices fell by more than
15 percent during the Depression before rebounding as consolidation activity acceler-
ated (Appendix Figure C1). In a seminal study, Lamoreaux (1985) demonstrates that
consolidation was more likely in industries with lower profit margins and higher fixed
costs, consistent with mergers being a defensive response to price wars in more exposed
sectors of the economy.!! Wall Street financiers played an active role in promoting consol-
idations. Figures like J.P. Morgan and John W. Gates extracted substantial promotional
profits for organizing mergers, reaching up to 20 percent of the new firm’s capitalization
(Du Boff and Herman 1989; Markham 1955).

The Great Merger Wave of 1895-1904 caused a structural transformation of American
industry. Though intensity varied, a degree of M&A activity occurred in most manu-
facturing sectors (Nelson 1959). Unlike later merger waves characterized by diversifi-
cation or vertical integration, the Great Merger Wave was overwhelmingly horizontal—
combining direct competitors into dominant market players. Of the 93 consolidations

10. As reported in Bittlingmayer (1985), emphasis added.

11. Appendix C.1 discuss the industry-level evidence from Lamoreaux (1985). Ahumada (2025) comple-
ments it by showing that arbitrary protective tariffs contributed to more intensive consolidation activity.
This patterns is consistent with a model in which higher tariffs strengthen incentives to merge when
import prices constrain domestic pricing.



with traceable market shares, 72 controlled at least 40 percent of their respective mar-
kets and 42 controlled at least 70 percent (Lamoreaux 1985).!> The wave was not only
the largest M&A event in U.S. economic history, but also exceptional by international
standards. The UK and Germany also saw outbursts of M&A activity between 1880 and
World War I, but on a considerably smaller scale (Tilly 1982; Hannah 1974; Kling 2006).

Figure 2 shows consolidation activity in the U.S. between 1880 and 1920, revealing
the sharp timing and unparalleled scale of the Great Merger Wave.

Figure 2: Consolidation Activity and the Great Merger Wave, 1880-1920
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Note: The figure plots the value of industrial consolidations in the United States between 1880 and 1920 (in
billions of 2017 USD). The blue triangle and green circle series show consolidation activity from different
historical sources: Nelson (1959) and Conant (1901), respectively. Vertical lines mark key events that
shaped the merger wave. The sharp spike in merger activity between 1895 and 1904 defines the Great
Merger Wave.

Despite the varied performance of individual consolidations, the Great Merger Wave
significantly and enduringly reduced competition and increased industrial concentra-
tion (Porter 2006). Many mergers that aimed for near-total market control struggled
to maintain it: as Lamoreaux (1985) documents, aggressive post-merger price increases
often triggered entry by new competitors, leading to a partial erosion of market share.
By 1932, Livermore (1935) had classified about one-third of these consolidations as “fail-
ures” (Lamoreaux 2000). This designation, however, did not necessarily imply collapse
or exit, but rather persistent underperformance on benchmarks such as earnings, stock
prices, or the need for repeated recapitalizations and restructurings. Yet these setbacks
did not bring a return to pre-merger levels of competition. Even where monopolistic

12. The lower number of consolidations covered in Lamoreaux (1985) reflects both double counting in
the Nelson figures (e.g. large consolidations like U.S. Steel took several progressively larger mergers to
achieve their final form) and data being unavailable for some mergers (likely smaller or less successful).
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dominance was short-lived, the industrial landscape remained fundamentally altered:
in sector after sector, consolidation gave rise to durable oligopolistic structures, with the
merged firm often retaining a leading—if no longer hegemonic—position (Lamoreaux
1985; 2000)."°

The permissive merger environment ended abruptly as public concern over monopoly
power fueled the Populist and Progressive movements. Beginning in 1902, the Roosevelt
administration launched a series of landmark antitrust suits against major consolida-
tions, marking a sharp reversal in federal enforcement policy. The Supreme Court’s
1904 Northern Securities decision—ordering the dissolution of a railroad holding com-
pany created by J.P. Morgan—signaled the close of the era of unregulated consolidation
and effectively brought the GMW to an end. This new stance was reinforced by the 1911
breakups of Standard Oil and American Tobacco. Seeking to restrain Big Business and
address fears of economic exclusion and political manipulation, in 1914 Congress en-
acted the Clayton Act to prohibit mergers that would “substantially lessen competition,
or tend to create a monopoly” (Lamoreaux 2019). It also established the Federal Trade
Commission to enforce these provisions.

2.2 A Golden Age of American Innovation

Throughout the 19th century, U.S. innovation was largely the purview of individual in-
dependent inventors. Patents served as a key mechanism for monetizing inventions
thanks to a robust, and increasingly national, market for patent rights (Lamoreaux
and Sokoloff 1999; 2001; Lamoreaux, Sokoloff, and Sutthiphisal 2011). Notable patent-
protected inventions like the 1840 telegraph (Samuel A. Morse), the 1851 sewing machine
(Isaac M. Singer) and the 1876 telephone (Alexander G. Bell) formed the basis of new
and very successful companies dedicated to their commercialization.

From patents begetting firms, the U.S. gradually shifted to an innovation system
where firms beget patents (Nicholas 2010). In 1880, independent inventors accounted
for about 77 percent of patents and firms less than 10 percent. By 1940, firms were
assigned 57 percent of patents and inventors 37 percent. The pattern is even starker
for breakthrough innovations: between 1880 and 1940 the firm share went from 19 to
78 percent.!* The Great Depression contributed to the decline of independent inven-
tion, as younger inventors increasingly joined corporate research departments (Babina,
Bernstein, and Mezzanotti 2023).

Firms took on a more active role in organizing the inventive process, often through
the establishment of dedicated research facilities and the employment of educated per-
sonnel (Mowery and Rosenberg 1989; Mowery 1990). While pioneering examples like
Thomas Edison’s New Jersey laboratory date back to the 1880s, the R&D lab as a special-
ized organizational unit devoted to systematic experimentation and discovery became
more common around and after 1900."> By the 1920s, scientific methods and profes-

13. Indeed, Ma et al. (2025) find that today’s largest U.S. firms disproportionately originate from the
1880-1920 cohort, likely a reflection of the GMW’s long-run imprint on American Big Business.

14. My calculations based on data from CUSP (Berkes 2018) and Kelly et al. (2021).

15. The functions of early R&D labs are clearly illustrated by the 1902 establishment of DuPont’s Eastern
Laboratory. Hounshell and Smith (1988, p. 19) quotes the new laboratory’s, director, Charles L. Reese, as
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sional management had become prevalent (Arora et al. 2024). Data from the National
Research Council show that in 1940 about 2,300 firms owning R&D labs were employing
about 71,800 personnel, with a large majority having scientific or technical education.
Bell Labs, for example, employed over 3,600 staff by 1940, including hundreds of Ph.D.
scientists working on fundamental and applied research problems (Gertner 2013).

In a context of nearly absent federal support for R&D, industry’s relationship with
academia combined collaboration and competition. Firms relied on universities for
trained engineers and scientists, but also built internal research infrastructure to com-
pensate for weak public science (Arora et al. 2024). Some firms recruited prominent
academic scientists into industry by offering superior equipment, research freedom, and
generous salaries (Hounshell and Smith 1988; Wise 1985).'° Others formalized partner-
ships with universities through fellowships, contract research, and advisory boards (Fur-
man and MacGarvie 2007). These ties became significant sources of funding for some
institutions: by 1919, industry gifts to the University of Michigan exceeded government
research funds by a factor of three (University of Michigan 1919).

The era of the R&D lab witnessed remarkable technological progress, with break-
through innovation reaching historical peaks in the 1920s and the early 1930s (see Figure
1). Among the significant innovations emerging from corporate labs were synthetic ma-
terials (nylon and neoprene from DuPont), communications technology (radio and early
television at Radio Corporation of America), and electrical innovations (household ap-
pliances and power systems from General Electric) (Rosenberg 1994). Field (2011) argues
that the 1930s were particularly productive despite the Depression, with technological
advances in manufacturing, transportation, and communications laying groundwork for
subsequent economic growth.

Between 1890 and 1940, large firms grew to account for a large and increasingly dis-
proportionate share of innovative activity (Figure 3). Companies like DuPont, Eastman-
Kodak and GE came to dominate their respective areas of technological specialization.
Yet scholars debate whether this concentration of innovative activity served broader tech-
nological progress (Nicholas 2003; Lamoreaux 2000; Mowery 1990). In particular, work
by Reich (1977, 1980, 1985) has highlighted R&D and patenting practices by dominant
tirms like GE and Bell that seemed—often overtly—directed at preempting competitors
and erecting barriers to entry, rather than commercializing useful new or improved prod-
ucts. Consistently with this view, Watzinger et al. (2020) and Watzinger and Schnitzer
(2022) show positive innovation effects from the demise of the Bell System. By contrast,
Chandler (1977) and DeLong (2022) argue that large firms developed crucial organiza-

he outlined six objectives for the new institution:

(1) To improve as far as possible the chemical operations now employed. (2) To investigate the
explosives now being manufactured, to revise their Formulas and to put them on a scientific
basis. (3) To devise or discover new explosives for general and specific purposes. (4) To
keep in touch with all new and improved processes which have any bearing on operations
connected with the explosives industry. (5) To investigate new explosives brought forward
by outsiders or suggested by members of the Company. (6) To train young chemists and
keep the plants supplied with technical, assistants.

16. Prominent examples include Irving Langmuir at GE and Wallace Carothers at DuPont.
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Figure 3: Share of Patents and Breakthrough Innovations from Large Firms, 1890-1940
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Note: The figure shows the increasing dominance of large firms in U.S. innovative activity between 1890
and 1940. The solid line shows the share of all U.S. patents assigned to large firms; the dashed line
reports their share of breakthrough innovations. The trend persists when normalizing patent shares by
asset shares (from Figure 1). Normalized series are represented by circles (patents) and triangles (break-
throughs). Large firms are identified using the list in Collins and Preston (1961).

tional infrastructure that greatly benefited development and discovery. Positive accounts
of the achievements of corporate R&D in specific enterprises are not lacking, including
DuPont (Hounshell and Smith 1988), Bell Labs (Gertner 2013), Eastman-Kodak (Jenkins
1975) and General Electric (Wise 1985).

2.3 A Look at the International Harvester Company

The International Harvester Company provides a useful case study. Formed in 1902
through the merger of fierce competitors McCormick and Deering Harvester Companies
plus three smaller manufacturers, it embodied the classic pattern of the GMW: hori-
zontal consolidation facilitated by Wall Street financiers, clearly motivated by a desire
to end price competition (Kramer 1964)."” The merger achieved its immediate goal—

17. According to Kramer (1964, p. 301)’s rich analysis of historical records and correspondence, the
“overwhelming weight of evidence points to elimination of competition in order to control output and
prices, and thus ultimately to increase profits as the most important motive of the merger.” The merger’s
execution was critically facilitated by ]J.P. Morgan & Co. There had been at least two earlier attempts
at consolidation, one of the key roadblocks being disagreements between the McCormick and Deering
families as both wanted to control the merged organization. Eventually, George W. Perkins of the Morgan
firm structured and executed an agreement, at no small cost for the manufacturers—overall ].P. Morgan &
Co. got 4.2 million dollars in commission and promotional fees (about 3.5 percent of capitalization), and
outsize decision power (Kramer 1964).
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Figure 4: Patenting Activity of International Harvester and its Predecessors, 1885-1940
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Note: The figure tracks patenting activity before and after the 1902 formation of International Harvester
through the merger of McCormick Harvesting Machine Co., Deering Harvester Co., and three smaller
manufacturers—Milwaukee Harvesting Machine Co., Plano Manufacturing Co., the Warder, Bushnell,
and Glessner Co. The pre-merger total (dashed line) shows the combined patenting output of the merging
firms, namely McCormick, Deering and Milwaukee, as the other two firms did not patent.

International Harvester commanded approximately 90 percent of total domestic produc-
tion of grain binders and about 80 percent of mowers, the two major types of harvesting
machines. An investigation by the Bureau of Corporations found substantial price in-
creases between 1903 and 1911 and much greater profitability in product lines that were
more monopolized (Kramer 1964).

Figure 4 tracks the innovative activity of International Harvester and its predeces-
sor firms over time. For a pre-merger benchmark, I use the combined patenting of the
merging firms. Prior to consolidation, the constituent firms collectively averaged 12.8
patents annually. Post-merger, this figure more than tripled to 48.1 patents per year.
Breakthrough innovations also increased markedly, rising from an average of 0.18 to
1.49 annually. By 1940, International Harvester operated R&D facilities in eight locations
employing hundreds of specialized scientific personnel. Among its major contributions,
International Harvester introduced the first general-purpose tractor, the Farmall (1924),
which transformed mechanized agriculture by replacing single-use machines with a ver-
satile, mass-produced platform for plowing, planting, and cultivation.

The case of International Harvester illustrates how industrial consolidation during
the Great Merger Wave could coincide with substantial increases in innovation. The
remainder of the paper investigates whether this pattern generalizes—whether mergers
systematically caused firms to become more innovative—and explores the mechanisms
and broader consequences of this radical transformation of American industry.
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3 Data

To study the relationship between Big Business and innovation, I collect extensive data
covering firms, inventors and patents between 1875 and 1955. This effort results in three
key contributions. First, a detailed dataset describing M&A activity during the Great
Merger Wave and beyond. Second, a firm linkage system that harmonizes identities
across disparate sources and tracks evolving ownership, enabling accurate attribution of
innovation to the correct business entities. Third, a long-run panel of all U.S. inventors
matched to patent and firm information.

3.1 Sources

My analysis draws on several data sources—discussed in greater detail in Appendix A.

Merger activity. I digitize the detailed handwritten worksheets compiled by Ralph
Nelson for his seminal study of U.S. merger history (Nelson 1959).'® Although Nelson
originally published only aggregate statistics, his raw data provides granular informa-
tion on each consolidation and acquisition, including the names of both acquiring and
acquired firms—critical for analyzing pre-merger innovation performance. These work-
sheets identify the type of merger (consolidation versus acquisition), integration strategy
(horizontal, vertical, or mixed), and industrial classification (SIC codes). For a subset of
cases, Nelson also recorded incorporation details, capitalization values, notes on assets
and output. To collect this information Nelson consulted a wide variety of historical
sources, and extensively double checked and validated his data.

R&D laboratories. I digitize surveys by the National Research Council conducted
between 1920 and 1946. This data contains information on the firm operating the lab and
its locations (some firms operated more than one laboratory), together with personnel
and other details. The 1940 and 1946 surveys also collected establishment dates for each
lab location. Improving on previous efforts, I carefully disaggregate information at the
level of each lab location and use their establishment dates to better track lab activity
over time. The definition of an R&D lab in these surveys sometimes includes modest
facilities like workshops and testing sites, which nonetheless contributed to product
development, patent evaluation, and incremental innovation, making them meaningful
indicators of corporate inventive capacity.

Patent data. I rely on the CUSP dataset (Berkes 2018), which includes the name of
both inventors and assignees, their location, and each patent’s technological classifica-
tion and citations. I complement this information with measures of breakthrough quality
developed by Kelly et al. (2021). These are text-based metrics that capture how original
(different from previous patents) and impactful (similar to future ones) each patent is.
Being in the top 10 percent of this measure, after residualizing cohort effects, defines a
patent as a breakthrough. This method has key advantages: (1) because it does not re-
quire external information, it can be computed for all patents; (2) it extends to historical
patents for which citation data is very limited and unreliable. Kelly et al. (2021) exten-
sively validate their measure, using lists of historical great inventions, modern citation

18. I am very grateful to Naomi Lamoreaux for sharing with me the scans of the originals.

15



data, and market valuation, among others.

Additional data. For the firm linkage described in the next subsection, I rely on
subsidiary data (1926-1950) from Kandel et al. (2019) and on extensive manual collection
of new information. I derived additional information from a variety of primary and
secondary sources, see Appendix A.

3.2 Firm Linking

A fundamental challenge for studying historical enterprises is disambiguating and track-
ing firms over time when working with unstructured data that lacks unique identifiers.
Companies frequently change names, use aliases, acquire other businesses, establish
subsidiaries, and reorganize—all creating discontinuities in the historical record. To ad-
dress this challenge, I implement a multi-stage algorithm that identifies and links firms
across disparate sources. Appendix B covers in greater details the steps outlined here.

First, I process the patent record’s unique 370,000 assignee strings (1840-1960) to dis-
tinguish between firms (78 percent of assigned patents) and individuals (22 percent).
I do this using a combination of rule-based classification and a machine learning algo-
rithm for named entity recognition. For firms, I standardize names using context-specific
cleaning rules and employ locality-sensitive hashing to create computationally efficient
comparison blocks. Within each block, deterministic matching rules based on string
similarity and temporal proximity resolve assignee identities. At this step, I identify
approximately 137,000 unique firm assignees. However, this is not yet a fully complete
or reliable measure of a firm’s patent record, especially for the largest and most long-
lived businesses. The same firm may radically change its name over time or have some
patents assigned to a distinct subsidiary that it fully controls, both of which might result
in distinct assignees.

Second, I harmonize firm names across non-patent sources, creating an unique iden-
tifier and a list of alternative names for each firm. To start, I manually collect a dictionary
of aliases, abbreviations and name changes for firms in all my sources. For instance, I
record that “American Car & Foundry” was also known as “ACF”, a link that would
be missed by most reasonable fuzzy matching rules. Next, I standardize name strings
in all my non-patent sources and use the hand-collected dictionary to perform both
exact and fuzzy pairwise matching between all sources. Afterward, I impose that my
pairwise matches be transitive and resolve any conflicts by further manual collection of
data.!” T iterated these steps until there were no conflicts. This process creates a master
list of approximately 12,800 disambiguated firms with harmonized identifiers across all
sources.

Third, I match assignees to this master list of disambiguated firms using the hand-
collected firm name dictionary and fuzzy matching techniques. About one-third of my

19. Concretely, if “American Car & Foundry’ in source 1 is linked with “ACF’ in source 2 and ‘ACF’ is
linked to “ACF i’ (clearly a typo) in source 3, then ‘American Car & Foundry’ should also be linked to
‘ACF i’ (linking sources 1 and 3). Imposing transitivity of pairwise links can result in conflicts, where
different firms in the one list are linked to the same firm in another list. When this happened, I would
review all the firms involved and collect new information that would explain the conflict (e.g. a missing
firm name change) or correct any mistakes in the primary and secondary sources used.
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12,800 disambiguated firms appear in the patent record. Assignees (classified as firms)
that are not matched to my disambiguated firms are assumed to be independent enter-
prises.”’

Finally, I dynamically map ownership by integrating Nelson’s M&A data, manually
collected information, and subsidiary data from Kandel et al. (2019). The year-by-year
ownership resolution algorithm begins with a baseline year (1869) where all firms with
no information to the contrary own themselves, then sequentially processes ownership
changes through 1960 and propagates them through the ownership chain.’! At each
stage, the algorithm traces ownership chains to identify ultimate owners. As for firm
disambiguation, I manually investigated and resolved ownership loops and conflicts,
iterating data construction until there were none. Overall, I account for about 23,000
ownership changes. This dynamic mapping allows me to consolidate patent activity at
the enterprise level throughout the sample period.

3.3 Inventor Disambiguation

I address the challenge of identifying unique inventors across the patent record by im-
plementing a probabilistic record linkage approach within the Fellegi and Sunter (1969)
framework. I build on previous work by Akcigit et al. (2022) by extending this effort
to the 1875-1940 period and including richer information. I implement a probabilistic
record linkage approach with multiple comparison dimensions (name similarity, techno-
logical overlap, geographical proximity, temporal distance, co-authorship and assignee
overlap). The algorithm, which incorporates Expectation-Maximization training to gen-
erate match probabilities, identifies 1.012 million unique inventors responsible for 2.273
million patents between 1875-1955. The disambiguation process and its validation exer-
cises are described in Appendix B.

From these disambiguated inventors, I construct a comprehensive longitudinal panel
at the inventor-year level. For each inventor, I create balanced yearly observations span-
ning their first to last patent. Patent information is aggregated annually, capturing
counts, breakthrough innovations, fractional contributions (adjusting for co-inventorship),
technological diversity, and collaboration patterns. To fill in information gaps in non-
patenting years, I assigning characteristics from the nearest patenting year.

To my knowledge, this is the first historical individual-firm panel large enough to
allow the estimation of a two-way fixed effect model a Iz Abowd, Kramarz, and Margolis
(1999).

4 Firm-Level Innovation Effects of the Great Merger Wave

My main empirical approach is to compare consolidations to a control group of non
merging firms, in a standard difference-in-differences framework. My treatment group is

20. To the extent that there are radical name changes or ownership changes not reported in my data, this
might be over estimating the number of distinct assignees in the patent record.

21. That is, if firm A buys firm B which was recorded to own firm C, firm A also buys firm C. This
ensures that repeated consolidations and subsidiaries are correctly carried over.
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composed of enterprises that have gone through at least one consolidation between 1895
and 1904. In the years before the merger, the outcome (e.g., patents) for the consolidation
is the sum of the outcomes for the individual constituent firms that will merge—similarly
to the International Harvester example (Figure 4). Additional details on selection and
construction of treatment units can be found in Appendix B.

In the short run, a consolidation reorganizes existing firms under unified ownership,
replacing the profit-maximizing choices of many competitors with those of one larger
and more dominant enterprise. As such, the relevant counterfactual that identifies the
effects of this sudden increase in “bigness”—firm size and market concentration—is
not a large incumbent firm, but the innovative behavior of the merging firms had they
remained separate. A limitation of this approach is that it does not separately identify
the effect of size and market dominance, but the compound effect of bigness.>

Data limitations make the selection of control firms more challenging. Ideally, one
would observe a wide range of comparable firms active before the GMW (regardless
of their patenting status), with rich information on their product market sector, main
technological area and asset size. Unfortunately, such wealth of data is unavailable for
most firms so far back in time.

To address limitations in data availability, I distinguish between the intensive and
extensive margins of patenting and adopt tailored strategies for each. The intensive
margin—focusing on firms that had patented prior to the GMW—forms the core of my
analysis, as the patent record offers richer pre-period data and a natural comparison
pool of non-merging firms with established innovation histories in similar technological
areas. For the extensive margin—where firms had no prior patents—I employ a comple-
mentary but more limited analysis. Because we cannot condition on being in the patent
record, I rely on firms that appeared in the 1900 Moody’s Manual of Industrial Securi-
ties. Restricting to comparable firms in this source that were not patenting before the
GMW and were not involved in the GMW, I obtain a control group for consolidations
on the extensive margin. For both intensive and extensive margins, I restrict the control
group to firms with asset sizes comparable to those of individual firms that merged.”’

On the intensive margin, my preferred approach compares merging to non-merging
firms in the same technological area. This comparison identifies the effect of consol-
idation by contrasting merged entities against what other firms achieved in the same
technological and macroeconomic conditions. To ensure that comparisons reflect differ-
ences driven by consolidation rather than baseline innovative capacity, I stratify firms
into six groups based on their pre-1895 patenting levels and reweight the control group
to match the distribution observed among treated firms.?* In my preferred specification,
the panel is balanced and years with no patents are coded as zeroes.

The dynamic specification is:

22. See Section 4.3 for suggestive evidence on the role of market concentration in driving innovation
effects.

23. Approximate range of $0.5-10 million, averaging around $3 million. In practice, I only exclude firms
that are positively attested in Moody’s Manual as outside this range, as firms not reported in Moody’s are
likely to be small.

24. The six strata correspond to the following pre-1895 patenting levels: 1, 2-3, 4-9, 10-25, 26-75, 76+.
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1930
Yite = & + Opc + Y. B - 1[t = m] - 1[GMW Firm;] + €y, (1)
m=1885,m+1894

where i indexes firms, t indexes years, ¢ indexes technological areas (one of nine CPC
sections in which a firm is most active), GMW Firm; is an indicator for merging firms.
The sample runs from 1885 to 1930, and standard errors are clustered at the firm level.
The treatment effects of interest are captured by B,;,. The outcomes y;;. are patents (of
any quality) and breakthrough patents. The static specification is analogous:

Yite = & + Orc + B - L[t > 1895] - L{[GMW Firm;] + €jye, (2)

where the difference-in-differences parameter of interest is f.

I define treatment effects in calendar time with 1895 marking the start of the GMW
period rather than using firm-specific merger dates. This choice reflects both the his-
torical nature of the merger wave—a sharp, concentrated episode driven by common
shocks—and important econometric considerations. Using calendar time harmonizes the
definition of intensive and extensive margins across treatment and control groups, en-
suring any mechanical effects from conditioning on pre-1895 patenting cancel out. It also
sidesteps known TWEFE bias for staggered adoption designs (Callaway and Sant’Anna
2021; Sun and Abraham 2021). Lastly, this approach avoids measurement error in merger
timing noted by Nelson (1959). However, Appendix C.2 shows the main results to be
robust to a relative-time specification and confirms flat pre-trends even when examining
GMW constituent firms.

For the extensive margin, while methodologically similar, data limitations restrict the
scope of analysis. I use the 1900 Moody’s Manual of Industrial Securities to identify
manufacturing firms that neither patented before nor participated in the GMW, and
thus create a control group of firms at risk of patenting. Since firms on the extensive
margin had no pre-GMW patenting history by construction and not all of them did
patent after 1895, I cannot define technological areas ¢ from the patent record. Instead,
in this analysis the time fixed effects J;c in Equations 1 and 2 vary by one of eight
economic sectors.”” The primary outcome is a time-varying indicator that switches from
0 to 1 in the first year a firm files a patent after the GMW and remains 1 in all subsequent
years, capturing the cumulative entry of firms into patenting. This analysis, while more
limited, provides complementary evidence on how mergers affected the entry of new
innovators.

Table 1 provides descriptive statistics for the 265 consolidations I reconstructed from
the Nelson worksheets.”® The majority (65 percent) had no patenting activity between
1885 and 1894, thus forming the basis for the extensive margin analysis. Consolidations
involved an average of 9.8 firms each, with intensive margin consolidations being notably
larger (14.1 firms on average) and more likely to achieve substantial market dominance.

25. I use sectors ¢ reported in Moody’s, matched to 1949 SIC codes reported in Nelson’s worksheets.

26. Notice that regression analyses use a balanced panel that excludes consolidations which were them-
selves bought by another firm during the sample period. Unbalanced panel results are entirely similar
and reported in Appendix C. There are 33 such consolidations, 15 on the intensive margin and 18 on the
extensive margin.
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The sample spans all major manufacturing sectors, with the largest representation in
food and consumer goods (27 percent) and primary metals (22 percent). Consolidations
on the intensive margin were most active in engineering and industrial technologies (50
percent of intensive margin firms).

4.1 Identification

The identifying assumption required for a causal interpretation of my empirical strat-
egy is that, conditional on technology-specific trends, selection into consolidation is not
correlated with unobserved determinants of future innovation. Therefore, the key threat
to identification is that merging firms were likely to diverge technologically around the
GMW because of latent innovation potential or contemporaneous shocks. For example,
if mergers were organized in order to control a firm that was about to produce a techno-
logical breakthrough; or if concurrent shocks, like financial fluctuations, both correlated
with merger decisions and affected innovation.

Five historical and empirical considerations support the validity of the identification
assumption.

First, extensive quantitative and historical evidence demonstrates that consolidations
targeted price competition, not expectations of future innovation. The 1893-97 depres-
sion triggered severe deflation, with wholesale prices falling 15% before recovering as
consolidations accelerated (Figure C1), creating strong competitive pressures (Parsons
and Ray 1975; Kramer 1964).”” Lamoreaux (1985) shows that industries with lower
profit margins, higher fixed costs, and larger plants were significantly more likely to
consolidate, while growth rates had weak predictive power (Table C2). GMW mergers
happened to the exceptionally large and sharply timed extent they did (Figure 2) because
of the additional pull factors coming from antitrust incentives (Bittlingmayer 1985), Wall
Street activism (Du Boff and Herman 1989; Markham 1955) and tariff policy (Ahumada
2025). More generally, there is no historical or empirical evidence that the GMW was
driven by attempts to control R&D assets nor potential.

Second, neither individual firms nor broader technological sectors selected into the
GMW based on differential innovative trends. Event study results later in Figures 5 and
17 show flat pre-trends both in the firm-level and technology-level analyses. Though
data are limited, in Appendix C.1 I show that individual firms that partook in GMW
consolidations are not very different from other firms, with goodness of fit of probit
specifications explaining participation in the GMW not exceeding 6 percent.

Third, the timing and magnitude of effects rule out mean reversion due to the De-
pression of 1893. One could worry that the economic downturn both increased merger
activity and temporarily depressed firm innovation, making post-merger increases ap-
pear larger than they really are due to mean reversion. However, two patterns in the
data argue against this interpretation. First, the sample extends back to 1885, providing
sufficient pre-depression data to detect such patterns, yet pre-trends remain flat with
no evidence of a pre-merger innovation decline. Second, the magnitude of post-merger

27. For instance, the consolidation of International Harvester was pursued to end a period of intense
competition that industry members dubbed the “Harvester War” (Kramer 1964).
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Table 1: Key Characteristics of GMW Consolidations

Sample: All Intensive Extensive
Firms Margin Margin
1) 2) (3)
N 265 (100%) 94 (35%) 171 (65%)
Consolidation Characteristics
Year (median) 1900 1899 1900
Firms per consolidation 9.8 14.1 7.3
Total patents in 1885-1894 6.5 18.4 0.0
Same-technology firms (share) - 85% -
Initial market share
>70% 36 (14%) 22 (23%) 14 (8%)
Between 40% and 70% 29 (11%) 22 (23%) 7 (4%)
<40% 17 (6%) 2 (2%) 15 (9%)
Not available 183 (69%) 48 (51%) 135 (79%)
Integration type
Horizontal 132 (50%) 56 (60%) 76 (44%)
Vertical 24 (9%) 3 (3%) 21 (12%)
Mixed 10 (4%) 5 (5%) 5 (3%)
Not available 99 (37%) 30 (32%) 69 (40%)
Sector
Mining & Natural Resources 34 (13%) 3 (3%) 31 (18%)
Food & Consumer goods 71 (27%) 18 (19%) 53 (31%)
Chemicals & Materials 37 (14%) 14 (15%) 23 (13%)
Primary & Fabricated Metals 57 (22%) 25 (27%) 32 (19%)
Machinery & Electrical Equipment 31 (12%) 20 (21%) 11 (6%)
Transportation & Instruments 23 (9%) 12 (13%) 11 (6%)
Not available 12 (5%) 2 (2%) 10 (6%)
Technological area (if ever patent)
Science-based 47 (18%) 25 (27%) 22 (13%)
Engineering & Industrial 99 (37%) 47 (50%) 52 (30%)
Infrastructure & Consumer 40 (15%) 22 (23%) 18 (11%)
Not available 79 (30%) 0 (0%) 79 (46%)

Note: This table presents descriptive statistics for the GMW consolidations I reconstructed from Nelson’s
handwritten worksheets. The intensive margin comprises firms with at least one patent between 1885-
1894, while the extensive margin includes firms with no activity in that window. Market share data comes
from Lamoreaux (1985).
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innovation far exceeds any pre-merger peak—averaging more than 300 percent above
pre-merger patenting levels—making simple mean reversion implausible as an explana-
tion.

Fourth, one might worry that observed innovation gains stem from technological
complementarities between merging firms rather than the act of consolidation itself.
This would be a threat to identification if consolidations were selectively formed to com-
bine firms with latent synergies. However, two pieces of evidence suggest otherwise:
tirst, 80 percent of consolidations with available information were horizontal mergers of
close competitors, and on average 85 percent of merging firms on the intensive margin
were active in the same technological area (Table 1); second, restricting the sample to
strictly horizontal consolidations yields similar results (Appendix C.3). Thus, selection
on complementarities is unlikely to explain the findings. At the same time, the ability
to exploit recombination once firms are consolidated can be viewed as a mechanism
through which “bigness”—the joint increase in scale and market power—operates. At
least at this coarse level, recombination across diverse technologies does not appear to
be the main driver of my results.

Fifth, one might worry that consolidations selected firms with superior managerial
talent, and that better management—rather than consolidation—drove innovation gains.
Yet the evidence makes this explanation unlikely. First, only one-twelfth of major con-
solidations were organized by industrialists themselves (Nelson 1959), indicating that
prior managers played little role.”> Mergers also fundamentally reorganized manage-
ment structures, as documented in case studies of International Harvester, U.S. Steel,
and more broadly (Kramer 1964; Parsons and Ray 1975; Lamoreaux 1985; Du Boff and
Herman 1989; Markham 1955). Such reorganizations created major discontinuities by
combining leadership teams, severing the link between (family) ownership and control,
and accommodating the demands of creditors and promoters. Second, the timing of
effects argues against pre-existing managerial superiority: if better management were
already present in merging firms, we would expect to observe differential innovation
trends before consolidation. Instead, pre-trends are flat. Third, my estimates substan-
tially exceed the magnitude and persistence of known management effects on innovation
and performance (Bertrand and Schoar 2003; Benmelech and Frydman 2015; Acemoglu,
Akcigit, and Celik 2022).

To the extent consolidation improved access to capital, enabled managerial reorgani-
zation, or facilitated technological recombination, these represent mechanisms through
which increased bigness affected innovation, not threats to identification.

4.2 Main effects

Figures 5 and 6 present the results from the main event study specification (Equation 1),
displaying B, estimates and their 95 percent confidence intervals. Across both patenting
and breakthrough measures, we observe flat pre-trends, followed by a sustained and
large increase in the aftermath of the merger wave. These effects build gradually and
peak after around 15-20 years—consistent with a long-run ramp-up in innovation output

28. Two-thirds were promoted by independent financiers and one-quarter by investment banks.
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rather than short-lived bump.

The magnitudes are substantial. As shown in columns 1 and 2 of Table C1 and
reported on the Figures, consolidating firms gained, on average, approximately 6 ad-
ditional patents and 0.56 additional breakthroughs per year. In relative terms, because
of relatively low initial levels, these effects correspond to a 310 percent increase in the
number of patents and a 536 percent increase in breakthroughs relative to the treated
units” pre-wave mean.

4.2.1 Robustness

In Appendix C.3, I demonstrate the robustness of these results. Figure C7 shows that my
baseline results are not explained by differential survival rates across treatment groups:
I re-estimate Equation 1 in an unbalanced panel that only retains observations from
three years before a firm’s first patent through three years after its last patent. This
approach accounts for firm entry and exit by excluding periods when firms are unlikely
to be at risk of patenting, and yields quantitatively similar results. Figure C6 shows
that my results hold when I trim the sample by excluding the top and bottom 5 percent
of firms. Figure C5 shows that restricting to (known) horizontal consolidations yields
similar results, suggesting the effect of consolidation is not driven by complementarities.
Appendix C.2 shows the main results in a relative-time specification.

Finally, I address a measurement choice: all results in this section use the grant year
of patents rather than the filing year. While filing dates more closely approximate when
inventions were created, and are used elsewhere in the paper, grant dates better capture
when intellectual property rights were assigned to specific firms—a critical consideration
when studying a period of intense firm-level transformations and when many patents
were bought from independent inventors, rather than produced in-house. Nevertheless,
Figure C9 and Table C4 confirms that results using filing dates yield substantively similar
conclusions.

4.3 Heterogeneity

To better understand how innovation effects vary systematically across different firm
characteristics, I adapt the difference-in-differences specification in Equation (2) by re-
placing the single treatment indicator with separate post-1895 indicators for each cate-
gory, allowing the consolidation effect to differ across dimensions of interest.”’

I begin by examining heterogeneity by market concentration. Figure 7 presents het-
erogeneity by the initial market share captured by consolidations. I use data from Lam-
oreaux (1985), who compiled information from archival sources, including industry pub-

29. Formally, I estimate:

H
Vite = & + 0tc + Y, By - [t > 1895] - 1[GMW Firm;] - 1[C; = h] + €j1c,
h=1

where h € 1,..., H indexes treatment categories defined by the variable C; (e.g., market share groups or
technology types), and all other notation follows Equation (2).
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Figure 5: Effect of Consolidation on Patenting—Intensive Margin Firms

157

E
S

I

0 |

T T T T T T T T T T
1885 1890 1895 1900 1905 1910 1915 1920 1925 1930
Year
—— GMW firms ——— Control firms
(a) Outcome levels
i
20 |
: B =599 (1.91) [2.24, 9.73]

I

I

i I

15 |

|

I

I

4] |

S |

= |

o |

I

I

I

I

I

|

I

I

T T T T T T T T T T
1885 1890 1895 1900 1905 1910 1915 1920 1925 1930
Year

(b) Event study estimates

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of con-
solidation on patents. Panel (a) shows IPW-weighted outcomes levels, Panel (b) shows 3, estimates and
their 95 percent confidence intervals. SEs are clustered at the firm level. Panel (b) also reports , the static
estimate from equation (2), with its SE in parentheses and confidence interval in brackets.

24



Figure 6: Effect of Consolidation on Breakthroughs— Intensive Margin Firms
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(b) Event study estimates

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of con-
solidation on breakthrough patents. Panel (a) shows IPW-weighted outcomes levels, Panel (b) shows B
estimates and their 95 percent confidence intervals. SEs are clustered at the firm level. Panel (b) also
reports B, the static estimate from equation (2), with its SE in parentheses and confidence interval in
brackets.
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lications, newspaper accounts, and Nelson’s worksheets. Since this data is not available
for all consolidations, I partition firms into three categories: (i) consolidations without
reported market share information (likely less successful or smaller mergers), (ii) those
achieving substantial but less than 70 percent market share, and (iii) those capturing
over 70 percent of their markets.*

The results reveal a consistent pattern: while innovation increases are positive across
all categories, they are substantially larger for consolidations that achieved the highest
level of market concentration. The pattern holds for both patents and breakthroughs.
Firms with the highest initial market share added 1.57 breakthroughs per year, compared
to an average effect of 0.56.

Next, Figure 8 shows that the increase in breakthrough innovations concentrates in
more science-based technologies, like chemistry, metallurgy, and electronics. 1 group
CPC sections in three categories based on widespread assessment of their historical R&D
intensity and closeness to the scientific frontier (Mowery and Rosenberg 1998; Chandler
1990; Arora et al. 2024). The science-based technology group encompasses chemistry,
metallurgy, scientific instruments, computing, electronics, and telecommunications (CPC
sections C, G and H). The engineering and industrial technology group spans mechanical
engineering, manufacturing processes, vehicles, weapons, heating systems and cross-
cutting technologies (CPC sections F, B and Y). The infrastructure and consumer-oriented
technology group includes agriculture, food processing, medical devices, construction,
textiles and apparel (CPC sections A, E and D).

Figure 7: Heterogeneity in Consolidation Effects by Market Concentration
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Note: This figure shows how the effect of consolidation on innovation varies with market concentration.
Firms are categorized into three groups: those without reported market share information (likely smaller
and less successful mergers), those achieving substantial but less than 70 percent market share, and those
capturing over 70 percent market share. Market share data comes from Lamoreaux (1985). Each bar
shows the estimated effect of consolidation on patents (panel a) and breakthroughs (panel b). Error bars
represent 95 percent confidence intervals, computed from SEs clustered at the firm level.

30. On the intensive margin, roughly half of consolidations fall into the first group, with the remaining
split evenly between the second and third (see Table 1).
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Figure 8: Heterogeneity in Consolidation Effects by Broad Technological Area
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Note: This figure shows how the effect of consolidation on innovation varies with broad technological
area. Firms are categorized into three groups according to the CPC section where they patent the most: (i)
sections C, G and H for the more science-based technology group, (ii) sections B, F and Y for engineering
and industrial technologies, (iii) sections A, D and E for infrastructure and consumer-oriented technolo-
gies. Each bar shows the estimated effect of consolidation on patents (panel a) and breakthroughs (panel
b). Error bars represent 95 percent confidence intervals, computed from SEs clustered at the firm level.

The results reveal a striking pattern in the distribution of innovation gains across
technology categories. While consolidations increased patenting activity across all three
groups, the quality composition of these innovations differs markedly. Science-based
technologies exhibit the strongest response in breakthrough innovations (1.27), with over
a quarter of additional patents representing high-impact discoveries (given the effect on
patents is 4.78). In contrast, infrastructure and consumer-oriented technologies show
much larger increases in total patenting but substantially lower breakthrough rates, with
only a small fraction of new patents achieving breakthrough status (about 4 percent).
This pattern suggests that the innovation benefits of consolidation were particularly pro-
nounced in research-intensive fields where systematic R&D and laboratory-based dis-
covery processes could yield greater innovation gains.

In Appendix C.4, I present additional heterogeneity analyses across sectors, inte-
gration types, and the degree of “business success”. Splitting by 1949 SIC industry
codes, although results are less precisely estimated, I find qualitatively stronger effects
in the machinery and chemicals industries. When examining integration type, I find that
horizontal consolidations—which comprised the majority of the GMW—drive the main
results. Vertical and mixed integration types show larger but substantially more impre-
cise effects, likely reflecting their limited representation in the sample. More successful
consolidations, as reported in Livermore (1935), saw the largest increases in innovation.

4.4 Alternative Inference Approaches

I implement three complementary strategies that more closely resemble the construction
of treatment units in that they aggregate several control units into one counterfactual
merger. The key limitations of these alternative strategies are that they are only feasible

27



when richer pre-treatment data is available, making them unsuitable for the extensive
margin and for sparser outcomes like lab formation (and possibly breakthroughs), and
that they offer less flexibility for conducting analyses that rely on linearity like the spa-
tial decomposition by R&D lab proximity (Equation 3). Nevertheless, each of these
approaches replicates the core results, both qualitatively and quantitatively

First, I conduct a placebo merger analysis. Within each technological field, I ran-
domly select sets of control firms in order to match the pre-period innovation levels of
treatment units. I then compare real to placebo consolidations in a standard difference-
in-difference framework. Standard errors are obtained by boostrapping the procedure
1,000 times.

Second, I use a synthetic control (SC) approach. For each consolidating firm, an opti-
mal weighted combination of control firms is constructed to match the treatment unit’s
pre-merger innovation trajectory. These weights are selected using standard optimiza-
tion techniques, following Abadie (2021).

Third, I implement synthetic difference-in-differences (SDID), following the method
developed by Arkhangelsky et al. (2021). This approach combines elements of difference-
in-differences and synthetic control by assigning weights to both units and time periods,
aligning pre-treatment trends while accounting for latent time-varying confounders. By
embedding these weights in a two-way fixed effects regression, SDID improves robust-
ness to violations of parallel trends and yields valid inference under weaker conditions.

Each of these strategies yields comparable estimates. Approximate Bayesian model
averaging (BMA) across specifications, including my preferred one, suggests that the
increase in patents per firm per year is around 6.35, and the increase in breakthroughs
is around 0.58—closely aligned with the effects from the baseline analysis. Appendix D
provides full results across robustness designs and details the BMA methodology.

4.5 Extensive margin

Beyond the intensive margin of firms with pre-merger innovation activity, I also examine
whether consolidation induced non-patenting firms to begin obtaining patents. Figure 9
presents event study estimates for the probability that a firm obtained at least one patent
after the merger wave, while Table C1, column 4, reports the average effects.

Recall that, because firms on the extensive margin had no pre-GMW patenting his-
tory, I use the 1900 Moody’s Manual to identify comparable non-merging firms as controls,
with time fixed effects defined at the industry level rather than by technological areas.

The results indicate that consolidations were 23.1 percentage points more likely to
begin patenting compared to non-merging firms.This corresponds to a near tripling of
entry relative to the 12.6 percent post-1895 average in the control group. By 1930, 52.4
percent of GMW firms had patented at least once, versus 19.8 percent of controls. Figure
9 shows that this gap emerged rapidly in the first decade after 1895, suggesting a swift
innovation response.

Appendix C provides complementary evidence: robustness to defining outcomes by
filing rather than issue year, and results from an unbalanced panel including consolida-
tions later acquired by other firms.

28



Figure 9: Effect of Consolidation on Probability of Patenting—Extensive Margin Firms
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(b) Event study estimates

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on the probability of patenting at least once for firms that have not patented prior to 1895. Panel
(a) shows outcomes levels, Panel (b) shows B, estimates and their 95 percent confidence intervals. SEs
are clustered at the firm level. Panel (b) also reports j, the static estimate from equation (2), with its SE in
parentheses and confidence interval in brackets.
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5 Corporate R&D Labs and Innovative Productivity

Why did consolidation lead to substantial firm-level innovation gains? The previous
section established that firms that merged during the GMW experienced approximately
four-fold increases in patents and six-fold increases in breakthrough patents, with partic-
ularly pronounced gains for firms achieving greater market concentration and operating
in science-based technologies. Several non-mutually exclusives explanations are pos-
sible, as big firms may: (i) face stronger incentives to innovate when they can better
appropriate returns from R&D (Schumpeter 1942; Spulber 2013), (ii) benefit from im-
proved access to capital markets, enabling longer-term, riskier projects (Atkinson and
Lind 2019), (iii) adopt distinct organizational practices (Chandler 1977), such as setting
up dedicated R&D facilities like industrial research laboratories (Mowery 1990).

Figure 10: Lab-owning firms’ role in U.S. innovation expanded dramatically
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Note: The figure shows the expanding role of lab-owning firms in U.S. innovative activity between 1890
and 1940. The solid line shows the share of all U.S. breakthrough innovations produced by firms with
R&D laboratories; the dashed line reports their share of all patents. The connected line with circular
markers shows the number of active R&D labs over time. Lab-owning firms are identified using National
Research Council surveys. Breakthroughs are defined using the Kelly et al. (2021) measure.

Influential narratives of American technological and economic development before
World War II emphasize the role of lab-based corporate R&D (Chandler 1977; Mowery
and Rosenberg 1998; Gertner 2013; DeLong 2022). Descriptive evidence on the U.S.
innovation ecosystem also suggests a strong relationship between labs and firm-level
innovation. Figure 10 shows that, by 1940, lab-owning firms—though a small minority
of innovative firms—accounted for about 30 percent of all new patents. More strikingly,
they captured an outsized share of breakthrough patents, roughly 60 percent.

This section argues that R&D lab establishment is indeed a key mechanism in the

30



causal chain from “bigness”—Ilarge firm size and market dominance—to innovation. I
proceed in two steps. First, I demonstrate that consolidation directly leads to laboratory
establishment (the bigness to labs link) using the same quasi-experimental framework
from Section 4. Notably, most consolidation-driven innovation gains concentrate spa-
tially around laboratory facilities. Second, I investigate whether laboratories genuinely
enhance firm innovative productivity (the labs to innovation link) by expanding the anal-
ysis beyond GMW firms. I build a matched inventor-firm panel and use it to measure a
lab-specific productivity premium from inventor sorting and other confounding factors.

5.1 Consolidation and Laboratory Establishment

To assess whether bigness leads to lab establishment, I estimate the GMW treatment
effect on firms’ probability of having at least one (dated) R&D lab. This outcome is based
on labs that have a non-missing establishment date in the NRC surveys. The analysis
thus requires that the distribution of missing establishment dates does not correlate with
differential trends in lab openings across GMW and non-GMW firms. The specifications
are the same as in Section 4, Equations 1 and 2.

Results show consolidation significantly increased laboratory adoption. Among firms
with pre-merger patents (intensive margin), treatment firms were 16 percentage points
more likely to establish at least one R&D lab during the post-wave period (Figure 11
and Table C1, column 3). Notice that, because this outcome features limited variation,
observations are grouped in 3-year bins. By 1930, 35.4 percent of GMW firms on the
intensive margin had at least one (dated) R&D lab, compared to only 2.6 percent of
control firms.*!

For firms with no prior patenting activity (extensive margin) consolidation similarly
increased laboratory establishment. Consolidated firms were 4.5 percentage points more
likely to establish at least one R&D lab during the post-wave period (Figure 12 and Table
C1, column 5). By 1930, 11.8 percent of GMW firms on the extensive margin had at least
one (dated and active) R&D lab, while only 2.2 percent of control firms did.*

Appendix C presents results on heterogeneity by initial market share and techno-
logical area that mirror those for patenting outcomes. It also includes additional event
studies for the number of active labs.

5.1.1 Spatial Decomposition: Linking Labs to Innovation Gains

In both modern and historical patent data, it is hard to discern if an inventor who
assigns a patent to a firm works for that firm directly or not.”> One way to address
this problem is to rely on physical distance (Nicholas 2009). If laboratories represent the

31. If we consider labs without an establishment date and extend the horizon to the last NRC survey in
my data, 1946, 54 percent of GMW firms on the intensive margin had at least one lab, compared to less
than 5 percent in the control group. See Table C5 in the Appendix.

32. If we consider labs without an establishment date and extend the horizon to the last NRC survey in
my data, 1946, 20 percent of GMW firms on the extensive margin had at least one lab, compared to about
4 percent in the control group. See Table C5 in the Appendix.

33. For instance, an independent inventor might sell their patent rights to a firm before issuance.
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Figure 11: Effect of Consolidation on Having any R&D Lab—Intensive Margin Firms
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(b) Event study estimates

Note: This figure presents event study estimates showing the firm-level effect of consolidation on having
any R&D lab. The specification is perfectly analogous to equation (1), but observations are grouped
together in 3-year bins. Panel (a) shows IPW-weighted outcomes levels, Panel (b) shows B, estimates and
their 95 percent confidence intervals. In Panel (b) the x-axis reports the first year in the bin, so that the
values shown for 1895 correspond to the 1895-1897 bin. SEs are clustered at the firm level. Panel (b)
also reports B, the static estimate from equation (2), with its SE in parentheses and confidence interval in
brackets.
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Figure 12: Effect of Consolidation on Having any R&D Lab—Extensive Margin Firms
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(b) Event study estimates

Note: This figure presents event study estimates showing the firm-level effect of consolidation on having
any R&D lab. The specification is perfectly analogous to equation (1), but observations are grouped
together in 3-year bins. Panel (a) shows IPW-weighted outcomes levels, Panel (b) shows B, estimates and
their 95 percent confidence intervals. In Panel (b) the x-axis reports the first year in the bin, so that the
values shown for 1895 correspond to the 1895-1897 bin. SEs are clustered at the firm level. Panel (b)
also reports B, the static estimate from equation (2), with its SE in parentheses and confidence interval in
brackets.
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primary mechanism linking consolidation to innovation, then we should observe that
innovation gains concentrate among lab-owning firms, and especially in proximity to
their laboratory facilities. To test this prediction, I decompose the consolidation effects
on patents and breakthroughs from Section 4 by the geographical proximity of inventors
to laboratory locations.

I partition patent and breakthrough counts into mutually exclusive and jointly ex-
haustive categories based on the relative locations of a firm’s R&D lab locations (if any)
and its inventors. Each patent is classified as: (i) within 50km of a dated, active lab;
(ii) within 50km of an undated lab; (iii) beyond 50km of any lab operated by the firm;
or (iv) assigned to firms without any labs.** By linearity of the difference-in-differences
estimator in Equation 2, running separate regressions of the form:

Y, = ol +6). + B - 1[t > 1895] - 1[GMW Firm;] + ¢, , (3)
with partitions j such that y;. = }; y;tc, yields a set of coefficients f/ that sum to the
total effect B reported in Table C1. Table 2 presents these decomposed effects, with
each coefficient’s share of the total effect indicating the relative contribution of different
categories to the overall innovation response.

The spatial decomposition in Table 2 strongly supports the laboratory mechanism,
especially for higher impact patents. More than half of the total causal effect on break-
throughs comes from patents within 50km of an R&D lab. An additional 30 percent
comes from patents assigned to lab-owning firms but filed by inventors beyond this
50km radius, consistent with a key function of early laboratories: testing and evaluating
outside inventions before purchasing them. Overall, 4 in 5 breakthrough innovations
causally attributed to the Great Merger Wave came from lab-owning firms.

5.2 The R&D Lab Innovation Premium

The evidence presented so far shows that bigness led to greater firm innovation and
investments in industrial research labs. However, the observed association between lab-
oratory adoption and firm-level innovation could reflect sorting of talented inventors or
selection of inherently innovative firms into lab ownership rather than genuine produc-
tivity advantages from laboratory organization.

To fix ideas, define the total innovation output of firm j as Y;, given by the sum of
inventor-level productivity:

Yi=Y vi  yi=f(a¢pA), (4)
i€&;
where &; is the set of inventors active at firm j, «; is inventor ability, ¢; captures all firm-
specific characteristics affecting productivity (such as size, market position, management
quality) apart from laboratory adoption, A; € {0,1} indicates whether the firm organizes
R&D through a laboratory. Assume that f(-) is increasing in its first two arguments.

34. A residual category, not shown but included in the analysis, captures patents with missing inventor
location or those assigned by inventors residing abroad, accounting for about 2-3 percent of the total
effect. See Appendix B for details on data construction.
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The proposed mechanism linking labs to greater firm-level innovation would imply
systematic innovative productivity differences by firm lab status. Lab-owning firms are
more innovative on average: E [Yj|A; =1] > E[Yj|A; = 0], as implied by Figure 10.
Because part of this pattern is mechanical (larger firms both employ more inventors and
are more likely to operate labs), let us focus on productivity. The key empirical question
is whether an observational productivity premium for lab-owning firms 7' exists at
the inventor level:

b — | [y1]|A] = 1] —E [;‘/1]‘)\] = 0] > 0, 5)

and, if so, why.
Three alternative mechanisms could underlie an observed inventor-level productivity
premium 771

1. Inventor sorting. Labs attract the most talented inventors (but do not raise pro-
ductivity):

E [0(1'|/\]' = 1} > E [Déil/\]' = 0} = jriab >0 but f (Oéi,gb]',l) = f (txi,qu,O) VZ,]

Alternatively, once inventor sorting is accounted for, lab-owning firms could still
display an innovative productivity premium because of either:

2. Selection on firm characteristics. Inherently more innovative firms simply choose
to establish labs (but do not raise productivity):

COVT’(Q[)]',/\]') >0= riab >0 but f (Dél',gb]',l) = f (oci,(pj, 0) Vi,j,

3. or a Lab-specific productivity premium. Laboratories genuinely enhance firm-
level innovation production:

f oy, ¢j,1) > f (a;,¢,,0) Vi,j =% >0

To assess the roles of these explanations, I expand the analysis beyond GMW firms
to consider all patenting firms, building a matched inventor-firm panel spanning 1875
to 1950.%° This comprehensive dataset provides sufficient variation in inventor mobility
and lab adoption to both: separate firm-level productivity effects from inventor sorting;
and investigate labs’ contribution to firm-specific innovative productivity. To do this, I
employ a two-way fixed effects decomposition following Abowd, Kramarz, and Margolis
(1999).

35. See Appendix B for details on inventor disambiguation and variable construction.
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5.2.1 AKM Framework

The standard AKM model specification is:

Inyi = a; + P + XipB + eir (6)

where y;; denotes the inventive output of inventor 7 in year ¢. The term a; captures time-
invariant inventor ability, while ;) represents the productivity effect associated with
the firm j where i is in year t. The vector X;; includes time-varying controls (inventor
experience and field-by-year fixed effects), and ¢;; is the residual. My preferred measure
of inventive output y;; is quality-weighted patents, where each patent’s weight depends
on the continuous version of the Kelly et al. (2021) breakthrough score.*

The AKM firm effect ¢; captures all firm-level productivity determinants and nests
the lab-specific premium:
oh oh
=—>0, =20,
I, =

where ¢; represents other firm attributes, and A; € {0, 1} indicates lab adoption.
For identification, I assume the following mean independence condition:

¥; = h(¢j, A)),

E(eit | X11,..., Xn1, j(1,1),.. ., j(N,T), ay,...,an, Y1,...,¢7) = 0, (7)

where N, ], T denote the total number of inventors, firms and time periods respectively.
This assumption underlies all AKM applications (Abowd, Kramarz, and Margolis 1999;
Card, Heining, and Kline 2013; Bonhomme et al. 2023) and has two main implications.
First, the model assumes additive separability: firm and inventor effects enter linearly
without interactions or complementarities. Second, inventor mobility across firms must
be exogenous to transitory shocks in productivity. Conditional on observed charac-
teristics, inventors do not systematically move to higher- or lower-performing firms in
response to short-term fluctuations in output.

In practice, an additional requirement for robust identification is sufficient mobility of
inventors across firms. The incidental parameter bias resulting from limited mobility has
been shown to severely affect variance decomposition and in particular quantification of
sorting (Bonhomme et al. 2023; Kline, Saggio, and Selvsten 2020). Short spells also
contribute to biasing estimates. I address potential biases arising from limited variation
in three ways. First, I employ the heterogeneity-robust bias correction developed by
Kline, Saggio, and Selvsten (2020). The KSS method requires a stronger leave-one-out
connectedness condition: the estimation set remains connected when any observation is
taken out. Secondly, I follow the best practices outlined in Bonhomme et al. (2023) and

36. Because the score can be negative, I employ a simple exponential transformation calibrated to roughly
match the patent value distribution in Kogan et al. (2017). Kelly et al. (2021) demonstrate positive corre-
lation between their quality measure and Kogan et al. (2017) dollar values. See Appendix B for details.
Quality-weighted patents offer two key advantages over simple counts: they are strictly positive over a
spell (enabling the logarithmic transformation that is standard in the AKM framework), and they capture
both quantity and significance of inventive output. Variance decomposition for the additional outcomes
is in Table E2.
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collapse observations at the spell level, which ensures unbiasedness in the presence of
serial correlation within spell.”” Third, to exploit as much variation as possible, I retain
spells where an inventor did not assign their patents to a firm, by creating pseudo-firm
categories: j = —1 for unassigned patents and j = 0 for patents assigned to individuals.
Thus, I let these observations increase mobility and contribute to the estimation of the
fixed effects.

The final estimation sample comprises approximately 94,000 inventors and 18,000
tirms over 1.3 million observations. Because most inventors patented only once and
the leave-one-out connectedness condition is demanding, the estimation sample is con-
siderably smaller than the total data at our disposal (see Table B2). However, in this
application limited mobility bias is strong and thus the bias-correction is indispensable
(see Appendix Table E2). Moreover, because in practice we are interested in career in-
ventors working within corporate R&D labs, discarding the many sporadic or loosely
connected patenters is not concerning.

I conduct two key tests to validate the core assumptions of the AKM framework for
the main outcome of quality-weighted patent output. Appendix Figure E2 presents the
results. If the model in Equation 6 is valid and its assumptions satisfied, then, conditional
on controls, changes in inventor output between spells should align with changes in
tirm effects. Panel (a) in Figure E2 tests this by plotting output changes against firm
effect changes for inventors moving between firms of different quality quartiles. The
close alignment between these series supports the model validity. If firm and inventor
effects enter additively without complementarities, model residuals should be flat across
the joint distribution of fixed effects. Panel (b) shows average residuals by deciles of
both inventor and firm effects. Consistently with the model assumptions, residuals are
generally flat.*

Additional validation tests are reported in Appendix E. As a robustness check, Ap-
pendix E.1 implements the semi-structural approach of Bonhomme, Lamadon, and Man-
resa (2019), which also allows for complementarities between worker and firm types and
confirms the main findings.

5.2.2 From Firm Effects to a Lab-specific Premium

Evidence from the AKM sample confirms the existence of sizable productivity premium
for lab-owning firms. Table 3 shows that, as hypothesized in Equation 5, inventor pro-
ductivity as measured by quality-weighted patents is 0.2 log points higher in firms op-
erating R&D laboratories.

The variance decomposition in Table 4 further reveals that firm-level effects (which
nest lab adoption) account for approximately 33 percent of total explained variation in

37. A spell (i,s) is the contiguous run of years inventor i is associated with firm j = j(i,s). Let ij;s be
the average quality-weighted output over the spell. I estimate the spell-level counterpart of Equation (6):
Ings — stﬁ = o + Pjiis) + Uis, where Xj; contains dummies for the calendar year in which the spell starts
and inventor cumulative experience (linear and squared) measured at the end of the spell. I fit j first, and
estimate AKM on the residualized log output.

38. The largest deviations appear among the lowest deciles, which is similar to the finding in Card,
Heining, and Kline (2013).
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Table 3: Innovative Productivity, Inventor Ability and Firm Effects by R&D Lab Status

Lab=0 Lab=1 Difference

€)) 2) 3)
Innovative productivity Iny;;; ~ 0.028 0.225 0.197
(1.310) (1.401) [0.000]
Inventor ability a; 0.091 0.041 -0.050
(1.013) (1.112) [0.000]
Firm effect ¢; -0.141 0.081 0.222
(0.965) (0.796) [0.000]

Note: This table shows average values and differences for key variables in the AKM sample. Quality-
weighted patents (logged) measures inventor-level innovative productivity; inventor fixed effects («;) cap-
ture time-invariant individual ability; firm fixed effects (i;) measure firm-level productivity effects. Both
fixed effects are derived from estimating the AKM model in Equation 6. Lab status is based on NRC
surveys. The difference column shows lab-owning minus non-lab-owning firms. Standard deviations in
parentheses, p-values in brackets for differences.

productivity. Inventor effects account for 75 percent and sorting contributes negatively
at -8 percent. Crucially, the firm share rises from 26 percent in 1875-1904 to 32 percent
in 1905-1950, coinciding with the proliferation of corporate R&D laboratories.

AKM estimates reject inventor sorting (explanation 1) as the primary driver of the ob-
served association between firm innovation and lab-ownership. Table 3 shows that aver-
age inventor fixed effects—capturing time-invariant inventor ability net of firm-specific
productivity—are actually slightly lower in lab-owning firms. Conversely, lab-owning
tirms exhibit substantially higher firm-level productivity effects. Therefore, the innova-
tive productivity gap 7% in Equation (5) does not arise from sorting of superior inven-
tors to lab-owning firms, but might be explained by a lab-specific productivity premium.
Appendix Figure E1 shows the overall distribution of inventor and firm effects by lab
status.

5.2.3 Lab Premium Persists within Size and Technology Classes

A firm’s choice to operate an R&D lab is non-random, and likely to correlate with unob-
served determinant of innovative productivity. Thus, without exogenous lab adoption,
we cannot definitely distinguish between selection (explanation 2) and a lab-specific
premium (explanation 3). However, suggestive evidence supports a direct, independent,
and positive effect of organizing R&D through laboratories on firm-level innovation.

To start, greater innovative productivity may be spuriously correlated with lab adop-
tion through its association with firm size or technological domain. Large firms may
both more easily afford dedicated research infrastructure and also innovate more for
reasons entirely unrelated to their laboratories. Under this view, the apparent lab effect
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Table 4: Bias-Corrected Variance Decomposition of Innovative Productivity

Full sample 1875-1904 1905-1950
Sample:

1) 2) 3)

Var(y — X'B) 1.784 1.791 2.028
R? 0.250 0.312 0.236
Var(y)/Var(y + «) 0.328 0.264 0.321
Var(a)/Var(¢p + ) 0.755 0.757 0.713
2Cov(¢,a)/Var(¢p + a) -0.083 -0.021 -0.034
Corr(¢, w) -0.084 -0.024 -0.035
Observations 1,310,550 125,741 1,085,024
Spells 227,284 30,587 190,690
Firms 18,286 3,451 15,183
Inventors 94,040 10,618 85,544
Movers (%) 61.38 82.93 58.15

Note: This table reports bias-corrected variance decomposition results from the AKM model (Equation 6)
using quality-weighted patent output as the dependent variable. The decomposition separates the contri-
butions of inventor ability («), firm productivity (i), and sorting between inventors and firms. Column
1 shows results for the full sample (1875-1950); columns 2-3 show results for early (1875-1904) and later
(1905-1950) sub-samples. Bias correction follows the KSS method. The sample includes only inventors
and firms in the largest connected set satisfying the leave-one-out connectedness condition. Movers are
inventors matched to multiple firms during their careers.

would disappear when we properly account for scale. Alternatively, laboratories might
simply reflect involvement in inherently more innovative, high-reward technological do-
mains. In this scenario the lab effect would be an artifact of underlying technological
opportunity rather than organizational capability.

Figure 13 shows that lab-owning status is associated with greater firm-level produc-
tivity even within large firms or science-based technologies. Panel (a) shows average
firm effects (¢) by bigness and lab status, where the baseline category comprises firms
that neither are large nor have a lab. For this exercise, a firm is big if it ever appeared
in a list of top 100 firms by asset size between 1900 and 1948. The figure shows that
having an R&D lab is associated with about 0.25 SDs higher firm effects, regardless of
size. Similarly, Panel (b) shows average firm effects by lab status and type of technology
in which they specialize. Here too the figure shows higher firm productivity associated
with research laboratories, even within technology type. Within science-based domains,
firms without a lab have 0.17 SDs higher firm effects than baseline firms, but this pre-
mium grows to 0.43 SDs for firms with a lab. This evidence indicates that correlation
with size and technological domain does not fully explain the observed productivity pre-
mium associated with operating R&D infrastructure, favoring explanation 3 (lab-specific
premium) over explanation 2 (selection).
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Figure 13: Firm and Inventor Effects by Lab Status and Firm Characteristics
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(b) By technological domain and lab status

Note: This figure shows average firm and inventor fixed effects from Equation 6. Panel (a) compares effects
by firm size (big firms are those appearing in the top 100 by asset size, 1900-1948) and lab ownership. Panel
(b) compares effects by technological specialization (science-based vs. other domains) and lab ownership.
Both effects (i and a) are measured in standard deviations. Average effects are relative to the baseline
category, first from the left.
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5.2.4 Evidence from Firms and Inventors Gaining Labs

Two complementary sources of variation provide additional evidence supporting an in-
dependent effect of R&D labs on innovative productivity: changes in firm-level effects
following lab establishment, and changes in inventor productivity when moving be-
tween firms with different lab status.

First, I test whether gaining an R&D lab is associated with higher firm-specific pro-
ductivity net of sorting changes. To do so, I focus on firms present in both the 1875-1904
and 1905-1950 AKM sub-samples (see Table 4, columns 2 and 3), for which a change in
their fixed effect can be computed, Ay;. I run the following cross-sectional regression:

AYjc = 6c + BGainedLab; + vX; + ¢jc, ()

where j indexes the firm, . are fixed effects by broad technological area ¢ (CPC Section),
GainedLab; is a binary indicator for firms that did not have a lab before 1904, but did
after. X; is either an indicator for making it in the list of top 100 firms by asset size after
1904 or for having consolidated during the GMW. For comparability, firm effects ¢; are
standardized. ¢; are heteroskedasticity-robust errors.

Table 5 presents results from the regression specification in Equation 8. Firms that
gained laboratories between sub-samples experienced large increases in firm-specific
productivity compared to firms that did not, controlling for technological area and in-
creases in size and consolidation activity. This pattern supports a causal lab-specific
premium rather than time-invariant firm characteristics that merely correlate with lab
adoption.

Second, I exploit inventor mobility to test whether being in a firm with an R&D lab
improves individual productivity. To do so, within the AKM sample, I identify about
14,000 inventors who have been in the same non-lab-owning firm for at least three years,
then transition to another firm and stay there for at least four years. Next, I compare
firm movers who joined a firm with a lab to those who joined another non-lab-owning
tirm in the following specification:

3
In(1+ Yigme) = & + ¥t + Om + Kc + Z Bm - 1[RelTime;,, = m]| - ToLab; + €j4c (9)
m=—3m#—1

where i indexes the inventor, t calendar year, m time relative to the move, c the techno-
logical area (CPC Section), and a;, ¢, m, k. are the respective fixed effects; y;,. is the
quality-weighted patent measure used for AKM,* ToLab; is an indicator for inventors
who moved from non-lab to lab firms, ¢;;,,,. are the errors, clustered at the inventor level.
The coefficients of interest are captured by f,.

Figure 14 suggests inventor gain significantly from joining an R&D lab-owning firm.
Panel (a) shows that, even in the raw data, levels and trends are perfectly aligned before

39. Note that the AKM estimation is done at the spell level, where output is never zero, so that the
outcome can be log-transformed. Yearly observations can contain zeros, so I use In(1+ x) to transform
the outcome.
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Table 5: Effect of Lab Establishment on Changes in Firm Productivity

Outcome: Change in Firm FE Ay

(1) (2) 3)
Opened Lab 0.576 0.580 0.461
(0.114) (0.117) (0.117)
[0.352, 0.800] [0.351, 0.809] [0.231, 0.690]
Became Big -0.067
(0.395)
[-0.842, 0.708]
GMW Firm 0.818
(0.254)
[0.319, 1.317]
CPC Section FE Y Y Y
N 1,091 1,091 1,091

Note: This table reports cross-sectional regression results examining changes in firm productivity following
lab establishment (Equation 8). The dependent variable is the change in firm effects between the 1875-
1904 and 1905-1950 AKM sub-samples. “Opened Lab” indicates firms that gained a laboratory between
periods. “Became Big” indicates firms entering the top 100 by asset size after 1904 (Collins and Preston
1961). “GMW Firm” indicates participation in Great Merger Wave consolidations. Robust standard errors
are shown in parentheses. 95 percent confidence intervals are reported in square brackets.

the move and then diverge sharply after the move.*’ Panel (b) reports the event study es-
timates from Equation 9. Even accounting for calendar time, relative time, technological
composition, and individual effects, inventors that move to firms with labs experience a
significant increase in their innovative productivity of about 0.12 log points. This pattern
supports a lab-specific premium directly benefiting individual inventors” productivity.

5.3 Innovation Processes in Industrial Research Laboratories

The productivity advantages associated with industrial research laboratories reflected
systematic organizational innovations in the research and development process itself.
Historical evidence reveals that labs fundamentally transformed innovation from in-
dividual invention to collaborative, team-based research and development. Lab-based
inventors were 20 percent more likely to work in teams compared to inventors in firms

40. Notice that the spike at time 0 is an artifact of panel construction where firms are assigned on the
bases of patent assignment, so that a firm move is mechanically associated with a patent. This is not an
issue for the AKM estimation as observations are collapsed at the spell level, thus taking no stance on
within-spell timing of productivity shocks. Comparing moving inventors nets out that mechanical effect.
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Figure 14: Effect of Joining Lab-Owning Firms on Inventor Productivity
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(b) Event study

Note: This figure shows the effect of joining a lab-owning firm on inventor productivity. The sample
includes inventors who worked at non-lab firms for at least three years before moving to another firm for
at least four years. Panel (a) shows raw outcome levels comparing moves to lab-owning versus non-lab
firms. Panel (b) shows event study estimates from Equation 9 controlling for inventor, calendar year, event
time, and technological area fixed effects. The outcome is quality-weighted patent output. Standard errors
are clustered at the inventor level. 95 percent confidence intervals are shown in gray.
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without dedicated research facilities, with repeat collaborations occurring significantly
more frequently within laboratory settings (Hartog et al. 2024). These collaborative
structures enabled systematic exploration of radical technological possibilities: lab-based
teams were 3.3 percentage points more likely to patent novel combinations of technol-
ogy classes, representing more than a 60 percent increase above baseline rates (Hartog
et al. 2024).

Industrial research laboratories also attracted and concentrated scientific talent in
ways that enhanced firms’ innovative capabilities. Large corporations operating research
laboratories were significantly more likely to employ prominent scientists and engage in
scientific publication, bridging the gap between academic research and commercial ap-
plication (Arora et al. 2024). This scientific orientation enabled labs to systematically
monitor technological frontiers, evaluate external innovations, and pursue longer-term
research projects that individual inventors or smaller firms could not sustain (Hounshell
and Smith 1988). The combination of collaborative research structures, scientific exper-
tise, and systematic R&D processes helps explain why laboratory adoption generated
genuine firm-level productivity premiums.*!

6 Aggregate-Level Innovation Effects of the Great Merger
Wave

Did the innovation gains of consolidating firms produce a net positive effect on U.S. tech-
nological development? The previous sections demonstrated that firms undergoing con-
solidation during the Great Merger Wave experienced substantial increases in patenting,
breakthrough innovations and R&D lab establishment. However, market consolidation
could trigger additional responses. On the one hand, product market and technological
barriers to entry (possibly from preemptive patent strategies) could reduce innovative
efforts by new firms, independent inventors and other competitors in affected technolo-
gies. More broadly, decreased competition could harm overall innovation, depending on
a number of structural factors (Aghion, Akcigit, and Howitt 2014; Akcigit and Ates 2023;
Bryan and Williams 2021). On the other hand, investments in R&D infrastructure may
spark technological races, produce knowledge spillovers and open new breakthrough
opportunities (Bloom, Schankerman, and Van Reenen 2013).

To assess the GMW's impact on overall U.S. innovation, I shift focus from individual
firms to aggregate patenting activity within technological domains. I examine this ques-
tion separately for established and emerging technologies. For technologies that were
already active before the merger wave (at least one patent before 1895), I measure how
consolidation exposure affected subsequent innovation levels. For technological domains

41. Using modern citations to historical patents as a proxy for quality, Nicholas (2009) finds patents
originating within 30 miles of corporate labs to be lower quality; however, Kelly et al. (2021) discuss the
potential biases and limitations in using long-lagged citations. Using the share of breakthroughs out of
total patents issued as a measure of quality, I find that for lab-owning firms between 1905-1940 patents
originating from within 50km of a lab had a breakthrough rate above 20 percent, compared to about 17
percent outside that range. Patents assigned to firms with no labs or not assigned to firms at all had a
breakthrough rates of 11 and 6 percent, respectively. See Table E1 in the Appendix.
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that emerged after 1895 (no patent before 1895), I analyze whether greater exposure to
the merger wave delayed or accelerated their initial development.

Figures 15 and 16 visualize how innovation patterns evolved for technologies with
different exposure to the Great Merger Wave. In established technologies (Figure 15), the
number of patents rises steadily for both exposed and unexposed technologies, with ex-
posed domains eventually exhibiting slightly higher levels. The gap is more pronounced
for breakthrough innovations, where GMW-exposed technologies show a visibly steeper
increase starting around 1903-1905. In contrast, Figure 16 shows the cumulative share of
emerging technologies that reach at least one patent or breakthrough after 1895. Here,
the emergence of breakthroughs appears delayed in technologies more exposed to the
GMW), even though the timing of first patents is roughly similar across groups.

These patterns suggest that the aggregate effects of the Great Merger Wave varied by
technological maturity: among established domains, those more exposed to consolida-
tion exhibit higher rates of breakthrough innovation, while among emerging domains,
exposure is associated with slower breakthrough development. In contrast, total patent-
ing shows only modest differences by exposure status, highlighting that the most mean-
ingful effects operate on the quality—not the quantity—of innovation.

The formal analysis below reveals a second key source of heterogeneity: whether
a technology is science-based or not.*> The interaction between technological matu-
rity and scientific intensity produces a clear pattern in the results. In science-based
tields, consolidation exposure is associated with consistently positive or neutral effects
on breakthrough innovation—both in established and emerging domains. By contrast,
non-science-based technologies exhibit limited effects in established domains and mod-
erately negative effects in emerging ones.

6.1 Innovation Responses in Established Technologies

How did exposure to the Great Merger Wave affect subsequent innovation outcomes in
established technological domains? To answer this question, I examine whether tech-
nologies that had greater exposure to consolidating firms before 1895 experienced dif-
ferent innovation trajectories afterward. While the descriptive patterns in Figure 15 are
suggestive, they may reflect systematic differences in the types or maturity of technolo-
gies where GMW firms were active, rather than causal effects of consolidation. To esti-
mate causal effects, I employ a difference-in-differences design that compares exposed
and unexposed technologies over time, within specific technological areas and vintage
categories.

I focus the analysis on patent classes with at least one patent before 1895. To de-
tine a technological domain, I aggregate CPC subgroups into approximately 1,000 size-
balanced technology domains. In particular, I use an agglomerative algorithm that
groups nearby CPC subgroups within nested CPC levels to reach approximately equal
pre-1895 sizes.*> Next, I measure consolidation exposure at the technology level using

42. As in Section 4, science-based technologies are defined as CPC sections C, G and H, encompassing
chemistry, metallurgy, scientific instruments, computing, electronics, and telecommunications.
43. This approach addresses two key issues. First, CPC subgroups differ dramatically in pre-1895 size.
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Figure 15: Innovation levels by GMW exposure status for established technologies
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Note: This figure shows innovation levels in established technologies (those with at least one patent before
1895) by GMW exposure status, between 1880-1940. Units of observation are clusters of CPC subgroups
aggregated into 977 size-balanced technology domains. GMW exposure is defined as having any pre-1895
patents held by firms that subsequently participated in the Great Merger Wave. Breakthroughs are defined
using the Kelly et al. (2021) measure. Both patents and breakthroughs are adjusted to account for multiple
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Figure 16: Development of Emerging Technologies by GMW Exposure Status
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Note: This figure shows the cumulative share of emerging technologies (CPC groups with no patents before
1895) that have emerged by GMW exposure status, between 1895-1940. Panel (a) shows the share with
at least one patent; Panel (b) shows the share with at least one breakthrough. GMW exposure is defined
by proximity in the CPC classification system: emerging technology groups inherit the exposure status of
their broader subclass based on whether related, pre-existing technologies had GMW firm activity before
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the pre-1895 patents of firms that subsequently participated in the Great Merger Wave.
Specifically, I define a technology as exposed to consolidation if GMW firms held any
patents in that technology before 1895. See Appendix B for details on the data construc-
tion.

The empirical framework employs a difference-in-differences design comparing ex-
posed to unexposed technologies over time. The static specification is:

Yitem = & + 5tc + Vg + [31 (Duringt X GMWZ) + ,52 (POStt X GMWZ) + Eitems (10)

where y;., represents outcomes for technology i during year ¢t in CPC section ¢ and
vintage m ; a; are technology fixed effects, J;. are year fixed effects by nine CPC sections,
v are year fixed effects by three vintage groups,** GMW; indicates binary exposure
before 1895, During, captures the merger wave period (1895-1904), and Post; covers the
subsequent period (1905-1940). The key outcomes are total patents and breakthrough
innovations within each technology, as well as measures that exclude direct contributions
from GMW firms themselves. I also examine the number of firms and inventors active
in a given technology-year, and the share of patents assigned to firms (versus other
assignees like independent inventors).

The identification strategy relies on the assumption that, conditional on the fixed
effects, technologies exposed and unexposed to GMW firms would have followed paral-
lel innovation trends absent the consolidation shock. This assumption is supported by
the flat pre-trends already evident in Figure 15 and formally tested in the event study
reported in Figure 17. Further, the parallel trend is plausible given that consolidation de-
cisions were driven by factors unrelated to innovation potential—primarily market com-
petition, overcapacity, and financial distress as discussed extensively in Section 2 and
4.1. The design effectively compares more-exposed to less-exposed technologies rather
than truly unexposed ones, since GMW firms expanded into emerging domains post-
consolidation, potentially diffusing treatment effects across the technological landscape.
The estimated effects therefore represent the differential impact of greater consolidation
exposure.

Panel A of Table 6 shows that technologies directly exposed to the Great Merger
Wave experienced small and statistically insignificant increases in both total patents (1.14
additional patents per year) and breakthrough patents (0.37 additional breakthroughs
per year) during the post-merger period. However, this aggregate picture masks striking
differential effects across technological domains. The heterogeneity analysis in Panel B

When exposure is defined as having at least one GMW-related patent, larger groups would mechanically
be more likely to meet that threshold, creating a spurious correlation between exposure and technology
size. Grouping CPC subgroups into similarly sized domains addresses this issue. Second, size-balancing
ensures comparable effects across technologies without requiring log transformations or normalizations
that would be problematic given the prevalence of zeros in the data. Technologies are constructed by
clustering CPC subgroups based on pre-1895 patent counts, while respecting the classification system'’s
hierarchical structure. Results are robust to alternative numbers of clusters (e.g., k = 750 and k = 1,500),
as shown in Appendix F.

44. To capture technological maturity (vintage), I define Earliest Year as the first year a patent is recorded
in a given CPC group and then take the median Earliest Year across all groups in a technology. I then
compute the terciles of the technology-level median Earliest Year to obtain my three vintages m.

49



reveals that science-based technologies (CPC sections C, G and H)* experienced large
increases in both patenting and breakthrough innovations, though only the latter effect
is significant at the 5 percent level. These gains represent a significant acceleration in
high-impact innovation within domains that would prove central to twentieth-century
technological progress. In contrast, other technological areas showed small, insignificant
and directionally negative effects.

Notably, gains for science-based technologies appear to be driven more by the quality
of innovation than by sheer volume. The estimated increase in breakthrough patents
(3.47 per year) represents nearly half of the total increase in patents (7.39 per year),
implying a breakthrough rate of roughly 47 percent. This is substantially higher than
the baseline rate of 10 percent that would be expected if breakthroughs were distributed
uniformly over time and across technologies. Importantly, these effects persist when
excluding direct contributions from GMW firms themselves (Table 6, columns 3-4). This
persistence indicates that the estimated effects capture spillovers to other innovators
rather than mechanical increases from the consolidating firms alone.

The event study in Figure 17 shows flat pre-trends for both science-based (blue) and
non-science-based (green) technologies, supporting the identifying assumption. Dy-
namic estimates also confirm differential effects over time. Post-merger, the figure re-
veals a clear divergence: science-based technologies experience large and positive effects
on both patents and breakthroughs, while non-science-based technologies remain flat.

To shed more light on potential effects on the structure of the innovation ecosystem,
I consider the number of active firms and inventors and the overall share of patents ob-
tained by firms. Table F1 reveals that GMW-exposed technologies attracted significantly
more firms (about 2.2) and inventors (3.2). The share of patents assigned to firms also
increased substantially (2.6 percentage points), consistently with a shift toward more or-
ganized, corporate-led innovation. In science-based technologies specifically, this pattern
intensified with larger magnitudes across the board.

Robustness exercises are reported in Appendix F. In particular, I show that results
are consistent when changing the number of technologies (clusters) and the set of con-
trols included. I also show results by terciles of GMW exposure, which do not reveal
significant differences.

45. This definition is analogous to that in Section 4. CPC sections C, G and H encompass: chemistry, met-
allurgy; scientific instruments, computing; electronics, telecommunications. Science-based technologies
represent about 13 percent of the total number of technologies in both exposed and unexposed domains.
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Figure 17: Effect of Consolidation Exposure on Technology-Level Innovation—Dynamic
Effects
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(b) Event Study for Breakthroughs

Note: This figure presents dynamic event study estimates showing the technology-level effect of consoli-
dation exposure on innovation outcomes. The specification is the dynamic equivalent Equation 10 with

year-specific coefficients:
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Blue triangles show effects for science-based techfg@logies (CPC sections C, G, H); green circles show
effects for other technologies. Panel (a) shows effects on patents; Panel (b) shows effects on breakthroughs.
Standard errors are clustered at the technology level. 95 percent confidence intervals are shown in gray.



6.2 Innovation Responses in Emerging Technologies

How did exposure to the Great Merger Wave affect the development of emerging tech-
nological domains? Newly emerging technologies offer a distinct margin along which
consolidation could shape the trajectory of U.S. innovation—by altering the incentives
or conditions under which new related technologies are discovered. Dominant firms
might delay and discourage entry into nascent fields that could disrupt their existing
products, or conversely, their R&D investments might accelerate the discovery of related
breakthrough opportunities.

To investigate this question, I conduct a survival analysis focusing on CPC groups
that recorded no patents before 1895. The outcome of interest is the timing of their
first appearance in the patent record, measured either by the first patent of any kind
or, in a separate estimation, by the first breakthrough patent. This framework assumes
that these technologies would eventually emerge in the patent record, but that GMW
exposure might accelerate or delay their development.

To construct a measure of exposure for these emerging domains, I exploit the hier-
archical structure of the CPC system. Its structure is such that: Group C Subclass C
Class C Section. Thus, within each CPC subclass, I flag exposure if any of its CPC
groups active before 1895 had at least one patent assigned to a GMW firm. All emerging
groups born into that subclass inherit its exposure status. This approach reflects the
idea that technologies within the same subclass are closely related in terms of knowl-
edge inputs, scientific foundations, or end-use applications. If consolidation influenced
innovation dynamics in exposed domains, these effects could spill over to related tech-
nologies emerging nearby:.

The empirical framework employs a Cox proportional hazards model to estimate the
likelihood that an emerging technology becomes active in a given year. The specification
includes CPC section-specific non-parametric baseline hazards, fixed effects for CPC
class, and controls for vintage:

Nges(t| Xges) = hs(t) exp(B - GMW Exposed, + ¢ - EarliestYearg + 6;) (11)

where ¢ indexes groups, c¢ classes, and s sections; hgcs(t|XgCS) is group ¢’s hazard of
activating for the first time at time ¢, given observables. The variable GMW, indicates
whether the group belongs to an exposed subclass, while EarliestYear, captures the year
in which any pre-1895 patent first appeared in g¢’s subclass. Standard errors are clus-
tered at the subclass level to account for shared treatment and unobserved correlations.
Because class fixed effects absorb level differences in first activation rates across broader
technological families, the coefficient B is identified from within-class comparisons be-
tween groups belong to exposed and unexposed subclasses. I estimate this model sepa-
rately for first patent and first breakthrough as the defining event.

The baseline survival analysis reveals no significant effects of GMW exposure on
the development of emerging technologies. Table 7 presents results from the Cox pro-
portional hazards analysis where estimates for B are reported as hazard ratios: a value
above one indicates that GMW-exposure increased the likelihood of a emerging technol-
ogy entering the innovation record in a given year, while a value below one implies a
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Table 7: Effect of Consolidation on Emerging Technologies

Outcome: First Patent First Breakthrough

Panel A: Overall Effect

GMW 1.016 0.865
(0.063) (0.090)

[0.900, 1.148]

Panel B: Heterogeneity

[0.704, 1.062]

GMW x Science-Based 1.029 0.965
(0.097) (0.128)
[0.856, 1.237] [0.744, 1.252]
GMW x Other Tech 1.005 0.682
(0.080) (0.099)
[0.859, 1.175] [0.513, 0.906]
Controls Y Y
Groups 2,898 2,898
Subclasses 474 474
N 81,693 107,085

Note: This table reports hazard ratios from Cox proportional hazards models estimating the effect of
consolidation exposure on the development of emerging technologies (Equation 11). The sample includes
CPC groups with no patents before 1895. GMW exposure for emerging groups is inherited from their CPC
subclass: a group is exposed if any group within its subclass had at least one pre-1895 patent assigned to
a GMW firm. Panel A shows overall effects; Panel B shows heterogeneity by science-based (CPC sections
C, G, H) versus other technologies. Hazard ratios above one indicate accelerated emergence; ratios below
one indicate delayed emergence. Standard errors clustered at the subclass level are shown in parentheses.
95 percent confidence intervals are reported in square brackets.

slowdown. Panel A shows that, on average, GMW exposure had no statistically signifi-
cant effect on the timing of emerging technology development. While the effect on first
patent is very close to one (1.02), the hazard ratio for first breakthrough (0.87) implies
a rather sizable slowdown of about -13 percent, though not significant at the 5 percent
level.

However, as with established technologies, average effects mask meaningful het-
erogeneity across types of technologies.”* Panel B in Table 7 distinguishes between

46. Science-based groups represented about 57 percent of the total number of groups in unexposed
domains, and about 39 percent in exposed domains.
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science-based and non-science-based technological domains. In science-based technolo-
gies, GMW exposure has insignificant hazard ratios are near one for both patents (1.03)
and breakthroughs (0.97). By contrast, non-science-based technologies show delayed
breakthrough development following GMW exposure. The estimated hazard ratio for
first breakthroughs in these domains is 0.68, implying a 32 percent reduction in the
annual likelihood of achieving a breakthrough. The effect on first patents null.

Appendix F reports additional results and robustness checks. In particular, I restrict
to exposed CPC groups and explore whether the intensity of GMW exposure (rather
than the fact of being exposed) affects emerging technology development rates. I find
insignificant effects, with point estimates suggesting a mild acceleration in more science-
based technological domains. I also show that the main results are robust to changing
the controls.

6.3 Overall Net Effect of Great Merger Wave Exposure

To assess the Great Merger Wave’s overall impact on American technological develop-
ment, I translate the preceding empirical estimates into aggregate breakthrough counts.
These back-of-the-envelope calculations quantify the total number of breakthrough in-
novations attributable to consolidation exposure during 1905-1940. For established tech-
nologies, I multiply the difference-in-differences coefficients and the number of exposed
technology-year observations. For emerging technologies, the survival analysis repre-
sents the most appropriate empirical approach given the absence of a meaningful pre-
period and the focus on timing of technological emergence. However, hazard ratios do
not translate into absolute breakthrough counts. I therefore estimate a linear specifica-
tion that captures the average difference in breakthrough production between exposed
and unexposed emerging technology groups, controlling for the same sources of vari-
ation as the Cox model. While this linear approach sacrifices some of the econometric
appeal of the hazard framework, it provides a reasonable approximation of the aggre-
gate effects by measuring observed differences in breakthrough activity across groups
with different consolidation exposure.

These aggregate calculations, detailed in Appendix F.1 and summarized in Table F7,
suggest that consolidation exposure increased breakthrough innovation by 13.2 percent
above counterfactual levels between 1905 and 1940. However, this aggregate effect masks
pronounced heterogeneity across technological domains. Among science-based tech-
nologies, GMW exposure generated a 30.3 percent increase in breakthrough innovations
relative to what would have occurred without consolidation. Conversely, non-science-
based technologies experienced a net reduction in breakthrough activity, declining by
6.7 percent below their counterfactual levels. These estimates underscore that while the
GMW generated substantial innovation gains in aggregate, these benefits were highly
concentrated in technological domains that required the organizational capabilities and
R&D infrastructure that large-scale consolidation made economically viable.
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7 Discussion

How do this paper’s findings align with economic theory and historical accounts of
American innovation? This section interprets the empirical results and discusses their
broader implications.

The substantial positive effects documented in Section 4 are consistent with Schum-
peterian forces dominating at the level of consolidated firms, at least on average. While
Arrow (1962) predicts that dominant firms have weak incentives to innovate, because
new technologies may cannibalize existing rents, two channels can generate increases in
innovation at the firm level. First, larger firms can benefit from scale in R&D—absorbing
fixed costs, attracting superior talent, and undertaking riskier long-term projects (Schum-
peter 1942; Rosenberg 1990; Atkinson and Lind 2019). Second, greater market concen-
tration can improve the appropriation of returns from innovation (Schumpeter 1942;
Spulber 2013).

Moreover, the evidence suggests that GMW firms’ patenting gains reflect genuine
invention rather than rent-seeking, on average. Some firms may have pursued “preemp-
tive” or “defensive” patenting to deter rivals (Gilbert and Newbery 1982; Igami 2017;
Akcigit and Ates 2023), and historical accounts raise this concern for several leading cor-
porations (Noble 1979; Reich 1985; Lamoreaux 2000). While the analysis cannot directly
observe intent, increases extend to breakthrough inventions—highly original, influential
discoveries that are unlikely to be primarily defensive. In addition, the gains are con-
centrated among lab-owning firms and patents filed near R&D facilities, consistent with
substantial resource commitments to systematic experimentation and research.

The evidence is consistent with a key causal chain linking “bigness”—large firm size
and market dominance—to innovation running through the reorganization of inventive
activity within laboratories dedicated to testing, experimentation, and discovery. In-
creased scale enabled GMW firms to bear the fixed costs and organizational investments
of R&D laboratories, which in turn raised inventive productivity. Section 5 shows that
(i) the observed productivity premium for lab-owning firms is not explained by sorting,
size, or broad technological area; (ii) firm productivity improves after gaining a lab; and
(iii) inventors become more productive upon joining lab-owning firms. The convergence
of these patterns supports a genuine productivity effect of laboratory operation.

These findings add quantitative weight to long-standing historical narratives on the
transformative role of industrial laboratories. Hounshell (1996) and Mowery and Rosen-
berg (1998) document the institutionalization of corporate research and its correlation
with the rise of systematic, team-based R&D. Hounshell and Smith (1988), Jenkins (1975),
and Wise (1985) highlight how labs at DuPont, Eastman Kodak, and General Electric al-
lowed large corporations to internalize innovation and manage disruptive change. More
recently, Gertner (2013) chronicles Bell Labs” extraordinary success.

Even if consolidating firms became more inventive, increased market dominance
could have deterred innovation elsewhere—by raising entry barriers, reducing competi-
tion, or crowding out smaller innovators. Section 6 shows a substantial net positive effect
on U.S. innovation, but an uneven one: in science-based technologies (chemistry, com-
puting, telecommunications), consolidation is associated with increases in breakthrough
innovations, whereas non-science-based domains exhibit negative effects.
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The positive effects in science-based fields can be rationalized by the dynamics of
fast-evolving scientific frontiers. In domains like chemistry and electronics, rapid sci-
entific progress created opportunities for sustained leadership (Noble 1979; Hounshell
and Smith 1988). This environment resembles the “neck-and-neck” technological com-
petition of Aghion et al. (2005), in which similarly positioned rivals race to innovate.
While consolidation gave GMW firms the scale and finance for systematic R&D, they
still faced pressure from independent inventors and new entrants; fast-moving frontiers
made lasting advantages harder to entrench (Hounshell and Smith 1988; Mowery and
Rosenberg 1998).

Spillovers are also consistent with consolidated firms encouraging broader inventive
effort. Rising Big Business with a greater ability to acquire or license strategic assets
may raise external researchers” expected returns (Phillips and Zhdanov 2013). The esti-
mated positive spillovers align with evidence that knowledge and productivity external-
ities from R&D can dominate business-stealing effects, especially in knowledge-intensive
sectors (Bloom, Schankerman, and Van Reenen 2013).

By contrast, non-science-based technologies display patterns consistent with reduced
innovation under diminished competition. In more stable technological environments
that rely on incremental improvement, GMW firm-level patenting increases represented
a reallocation rather than a net expansion of innovative activity. “Preemptive” or “de-
fensive strategies” may be more effective here, reducing both entry by new innovators
and patenting by non-GMW incumbents. . These domains may feature more technolog-
ical niches with limited knowledge interconnections, where even large R&D performers
generate fewer spillovers and business-stealing effects dominate (Bloom, Schankerman,
and Van Reenen 2013).

Arguably, Big Business and its R&D labs filled an institutional gap in early twentieth-
century U.S. innovation. Before World War II, the United States had virtually no federal
R&D funding (Gross and Sampat 2023; Gruber and Johnson 2019), and universities often
lagged European counterparts in training applied scientists and engineers (Graham and
Diamond 1997). In this vacuum, corporations built internal research capacity to substi-
tute for weak public science (Arora et al. 2024). Especially in fast-moving scientific fields,
large firms became not just users but contributors to science (Hounshell and Smith 1988;
Senecal 1980). The large lab productivity premium and the positive aggregate spillovers
from consolidation documented in science-based sectors suggest that corporate R&D
delivered particularly high returns in this environment.

8 Conclusion

Do large and dominant firms drive innovation? This paper exploits the Great Merger
Wave—the most sweeping quasi-experiment in firm size and market dominance in U.S.
history—to provide new evidence on this longstanding question. Between 1895 and
1904, distress from the 1893 Depression, court rulings inadvertently incentivizing con-
solidation, and Wall Street activism combined to radically transform American industry.
Thousands of medium and large firms disappeared into consolidations that aimed to
control supply and prices, not to pursue technological synergies. Using newly con-
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structed data linking corporate structure, innovation outcomes, and individual inven-
tors, I trace how this sudden increase in firm size and market dominance affected Amer-
ican innovation through World War II.

The large, dominant enterprises created during GMW consolidations significantly
expanded their innovative output. Among firms already patenting before 1895, annual
patenting rose by about six patents and 0.56 breakthrough patents—a roughly four-fold
and six-fold increase, respectively. Firms with no patents before 1895 were more likely
to begin patenting. Enterprises on both margins showed significantly higher probabili-
ties of establishing R&D labs, an organizational innovation that greatly improved firms’
innovative capacity. These firm-level gains translated into substantial aggregate effects,
on net raising breakthrough innovations by 13 percent, and 30 percent in science-based
technologies closer to the frontier.

Thus, the rise of Big Business during the Great Merger Wave played a pivotal role
in shaping the trajectory of American innovation. The benefits were concentrated in
science-based technologies where systematic R&D mattered most, while non-science-
based domains saw some innovation slowdowns. Corporate laboratories emerged not
merely as a byproduct of firm bigness, but as the central organizational mechanism
enabling top firms’ outsized innovative performance before World War II. In an era of
weak public science institutions, Big Business became the primary engine of American
technological progress.
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A Data sources

A.1 Nelson (1959) Merger and Acquisition Data

The core merger data derives from detailed handwritten worksheets compiled by Ralph
Nelson for his seminal study Merger Movements in American Industry, 1895-1956 Nel-
son (1959). See example in Figure Al. These worksheets, graciously shared by Naomi
Lamoreaux, provide granular firm-level detail on merger and acquisition activity during
the Great Merger Wave. For this paper, the worksheets were extensively digitized and
cross-checked by hand.

Nelson assembled his database through systematic examination of the weekly Com-
mercial and Financial Chronicle, supplemented by Moody’s Manual, Poor’s Manual,
and government reports. Every consolidation underwent standardized follow-up ver-
ification, with Nelson tracking each firm through financial publications for five years
to confirm consummation and continued operations. A secondary verification process
checked excluded companies against later editions of financial manuals across multiple
years. Nelson conducted additional checks comparing his data to other merger lists and
sector-specific sources that had compiled statistics about merger activity. See Chapter 2
in Nelson (1959).

Figure Al: Example of a Nelson (1959) worksheet
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A.2 National Research Council (NRC) R&D Laboratory Surveys

The NRC surveys represent the most comprehensive documentation of historical indus-
trial R&D activities in the US. Beginning after World War I as part of efforts to codify



laboratory locations and scientific personnel, the NRC conducted direct correspondence
surveys with firms operating R&D facilities. The surveys covered publicly traded and
private firms, providing nearly universal coverage, particularly starting in 1927. For this
paper, data from surveys conducted in 1920, 1921, 1927, 1931, 1933, 1938, 1940, and 1946
were extensively digitized and cross-checked by hand.

The NRC established the population of firms through annual directories, scientific so-
cieties’ firm lists, and advertising notices in technical journals. Letters were sent to firms
doing any research work, with no sharp distinction between scientific and industrial
research. The surveys defined research activities broadly, excluding only government-
funded laboratories and those tied to educational institutions. Response rates were high
as firms were keen to be included in this prestigious directory.

Standardized company names were obtained from Knott and Vinokurova (2023) and
extensively cross-checked, modified, and enhanced. Laboratory locations were geocoded
and validated against multiple sources. For firms operating multiple laboratories, infor-
mation was carefully disaggregated at the laboratory location level.

A.3 Patent Data: CUSP Dataset (Berkes 2018)

Patent information derives from the Comprehensive Universe of U.S. Patents (CUSP)
dataset (Berkes 2018), kindly shared by Enrico Berkers for the 1840-1960 period, pro-
viding comprehensive U.S. patent coverage through systematic integration of five data
sources: USPTO website, university/library databases, OCR-digitized patent images,
Google Patents, and post-1920 Google-digitized patents.

Filing years are extracted through systematic text parsing starting from patent 137,279
(April 1873), achieving coverage for 93.2% of patents from official sources and 6.1%
through text parsing. Technology classes come directly from the USPTO website across
all classification schemes (USPC, CPC, IPC), with regular updates ensuring consistency.
Name and location extraction employs a three-step approach with frequency-based fuzzy
matching for location correction and coordinate assignment through offline databases
supplemented by Google Maps queries.

The dataset achieves near-complete coverage with systematic quality indicators for
all extracted variables and frequency-based typo correction for geographic locations.

A.4 Breakthrough Patent Measure (Kelly et al. 2021)

The Breakthrough measure used extensively in the paper was designed and computed
by Kelly et al. (2021) using textual analysis of patent documents from 1840-2010. The
approach modifies traditional TFIDF weighting with "backward-IDF" that calculates in-
verse document frequency using only prior patents.

The underlying patent importance combines novelty (low backward similarity to
prior patents in a 5-year window) and impact (high forward similarity to subsequent
patents in a 10- or 20-year window). The importance indicator is the ratio of forward
to backward similarity (FS/BS). Breakthrough patents are defined as the top 10 percent
after removing patent cohort fixed effects. In this paper, I prefer the 20-year window,
given the wide availability of post 1940 data.
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Historical validation using 250 historically significant patents shows these patents
average in the 74th percentile of importance distribution (vs. 54th percentile for cita-
tions). Contemporary validation demonstrates strong correlation with forward citations
and significant predictive power beyond measurement horizon. Market validation shows
positive correlation with Kogan et al. (2017) patent value estimates.

A.5 Subsidiary and Ownership Data (Kandel et al. 2019)

Corporate ownership data from Kandel et al. (2019) covers U.S. business groups and
ownership for 1926-1950, beginning with Berle and Means (1932) list of 200 largest non-
financial corporations (about 60% of non-bank corporate assets).

Control trees are mapped using Moody’s manuals, tracing both upward (controlling
shareholders) and downward (subsidiaries) ownership relationships. Ultimate control
determination comes from newspaper archive searches, primarily the Wall Street Journal,
supplemented by corporate histories. The dataset tracks relationships across seven time
points (1926, 1929, 1932, 1937, 1940, 1950), creating an unbalanced panel of 15,270 firm-
years spanning 2,743 firms.

Control trees are cross-checked against CRSP data and demonstrate consistency with
original Berle and Means examples. Spot-checking against consolidated annual reports
confirms comprehensive coverage of significant entities.

A.6 Minor Data Sources

1. Moody’s Manual of Industrial Securities (1900). Historical firm size, sector and
name. For this paper, extensively digitized and cross-checked by hand from origi-
nal sources.

2. Collins and Preston (1961). Listing of large firms by asset size used for size-based
sample restrictions and robustness checks.

3. Conant (1901). Historical merger activity time series.



B Data construction

B.1 Firm Disambiguation and Linking Algorithm

This subsection describes a three-stage process to disambiguate patent assignees, har-
monize firm identities across sources, and map corporate ownership over time.

B.1.1 Patent Assignee Processing

The initial challenge involves distinguishing between individual and corporate assignees
within the patent record, then disambiguating entities within each category. I employ
a hybrid classification approach combining rule-based pattern matching with machine
learning-based named entity recognition. Deterministic rules using precompiled pat-
terns identify clear company indicators ("corporation,” "manufacturing") and person in-
dicators ("jr," "dr"), while transformer-based models classify ambiguous cases. This ap-
proach processes approximately 370,000 assignee strings, ultimately classifying 46% as
firms and 54% as individuals (firm assignees obtain 78% of all patents).

For computational efficiency across hundreds of thousands of potential pairwise
comparisons, I implement locality-sensitive hashing with MinHash signatures to cre-
ate comparison blocks. Assignees are grouped based on Jaccard similarity thresholds,
enabling efficient processing while preserving high-similarity pairs that likely represent
the same entity.

Within each block, deterministic matching rules resolve assignee identities using
string similarity measures, temporal proximity, and technological overlap. Match thresh-
olds vary by context: exact and near-exact matches require Jaro similarity > 0.975, while
more distant matches demand additional constraints including geographic proximity
and technological similarity. The algorithm applies more restrictive criteria for indi-
viduals than firms to prevent over-clustering of common names across long historical
periods.

This process consolidates the original 370,000 assignee strings into approximately
137,000 unique firm assignees, representing a substantial disambiguation while main-
taining conservative matching criteria to minimize false positives.

B.1.2 Cross-Source Firm Harmonization

The second stage harmonizes firm identities across disparate historical sources: Nelson
merger records, National Research Council laboratory surveys, subsidiary databases,
manually collected ownership records, and asset rankings. Each source undergoes stan-
dardized name cleaning addressing historical spelling variations, abbreviations, and
data entry inconsistencies.

Critical to this process is a manually constructed dictionary of over 1,500 alias re-
lationships that captures name variations no algorithmic approach would identify. For
example, linking "American Car & Foundry" with "ACF" requires domain knowledge
about common industrial abbreviations that automated fuzzy matching would miss.



This manual collection proves essential for accurately connecting firms across sources
with different naming conventions and temporal coverage.

I employ parallel fuzzy matching between all source pairs. The system expands each
source’s name space using collected aliases before applying bidirectional matching and
ensures symmetric relationships. Next, I impose transitivity across matches. Conflicts
arise when transitivity requirements create impossible linkages—for instance, when dif-
ferent firms in one source are both linked to the same firm in another source. I resolve
these conflicts through additional manual data collection, investigating historical name
changes, corporate reorganizations, or source documentation errors. This iterative pro-
cess continues until all conflicts are resolved, ensuring logical consistency across the
harmonized firm universe.

B.1.3 Dynamic Ownership Mapping

The final stage resolves corporate ownership relationships over time, tracing ownership
chains to identify ultimate controlling entities throughout the 1870-1960 period. This
process integrates ownership data from multiple sources: Nelson’s merger data, manu-
ally collected records, systematic subsidiary information (Kandel et al. 2019).

The ownership resolution algorithm begins with a baseline year (1869) where all firms
own themselves absent contrary information, then processes ownership changes chrono-
logically. When firm A acquires firm B, which previously owned firm C, the algorithm
ensures that A’s ownership of C is correctly propagated through the ownership chain.

The system traces ownership chains up to seven levels deep while detecting and han-
dling circular ownership relationships. When chains exceed maximum length or contain
circular references, these cases are flagged separately rather than making arbitrary as-
signments. Most ownership chains resolve in 1-2 steps, few reaching the maximum
length and none exceeding it.

Throughout this process, I manually investigate and resolve ownership loops and
conflicts using the same iterative approach applied to firm harmonization. The final
algorithm accounts for approximately 23,000 ownership changes, enabling consolidation
of patent activity at the enterprise level throughout the sample period.

B.2 GMW Panel Construction

The panel construction process creates balanced firm-year datasets spanning 1885-1940
that combine firm disambiguation results with patent outcomes, R&D laboratory data,
and merger characteristics.

B.2.1 Treatment and Control Group Definition

The methodological challenge involves defining treatment units that capture the full in-
novative capacity of merging firms both before and after consolidation. For pre-merger
periods, I implement retrospective group assignment, where constituent firms are as-
signed to their eventual 1904 treatment groups for all years prior to consolidation. This



approach ensures that the measured pre-treatment innovation baseline reflects the com-
plete innovative potential of the combining entities.

Treatment groups consist of firms participating in consolidations between 1895-1904,
identified in the Nelson data. I track but do not use in the analysis acquisition-only
enterprises, i.e. firms that expanded only through acquiring individual firms but un-
derwent no major consolidation. Post-1904, the system tracks actual ownership changes
through the dynamic mapping system described in Section B.1, handling cases where
treatment groups themselves become acquisition targets.

Primary controls consist of firms that were self-owned in 1885 and never participated
in Great Merger Wave activities. This includes patent assignees classified as firms but
lacking harmonized identifiers from the cross-source matching process (i.e. with no
record of merger activity).

B.3 Variable construction

R&D Labs. For each firm-year observation, I construct measures counting facilities op-
erational by the given year based on reported start dates, facilities with missing temporal
information, and an indicator for firms operating research facilities at any point during
the sample period.

Patent Classification by Geographic Proximity to Labs. Patent counts are parti-
tioned into mutually exclusive categories using a hierarchical classification system based
on inventor location relative to firm laboratories. Patents with exclusively foreign inven-
tors are classified separately. For patents with US inventors, I distinguish between firms
with and without laboratory facilities, with non-laboratory firms forming a distinct cat-
egory.

For laboratory-owning firms, patents are subdivided based on inventor location data
availability and proximity to research facilities. Patents lacking US inventor coordinates
are classified separately, while those with valid locations are assigned to distance-based
categories using haversine calculations at a 50km threshold: proximity to operational
laboratories, proximity to undated facilities, and distance beyond the threshold.

Firm Technology Classification. Technology categories derive from Cooperative
Patent Classification section codes. Firm-level assignment employs patent-weighted
modal classification across the entity’s complete portfolio during 1885-1940. In cases
of tied values, the algorithm defaults to the controlling firm’s technology class.

Economic Sector Harmonization. For the extensive margin analysis, I reconcile SIC
codes from Nelson merger data with Moody’s Manual industrial categories (sections),
creating seven harmonized categories: Machinery & Equipment (SIC 35-38, Moody’s
section 2), Metals & Materials (SIC 32-34, Moody’s section 3), Textiles & Apparel (SIC 22—
23,31, Moody’s section 4), Miscellaneous Manufacturing (SIC 24-30,39, Moody’s section
5), Mining & Extraction (SIC 10-15, Moody’s section 6), Food & Tobacco (SIC 20-21,
Moody’s section 7), and Miscellaneous Non-Manufacturing (remaining codes). An eigth
category captures missing information.



B.4 Inventor Disambiguation and Panel Construction

Identifying unique inventors across the patent record presents a fundamental challenge
for studying individual innovative careers and inventor-firm relationships over long his-
torical periods. Patent records contain only inventor names and locations without unique
identifiers, while individuals may appear inconsistently across patents due to name vari-
ations, geographic mobility, and other changes.

B.4.1 Probabilistic Record Linkage Framework

I implement inventor disambiguation using the Fellegi and Sunter (1969) probabilistic
record linkage framework in python using the splink package, which estimates match
probabilities based on agreement patterns across multiple comparison dimensions.

The system employs 28 distinct blocking rules that create candidate pairs for detailed
comparison, balancing computational efficiency with comprehensive coverage. Core
blocking strategies include exact year matches with name token overlap, geographic
proximity with name similarity, technological domain overlap within temporal windows,
and assignee relationship overlap.

The comparison framework incorporates six key dimensions: name similarity (us-
ing exact matches, component-wise matching, and fuzzy string similarity), technological
overlap (via CPC hierarchy at multiple levels), geographic proximity (coordinate-based
distances and administrative boundaries), temporal distance, co-authorship patterns,
and assignee relationships. Name comparisons receive term frequency adjustments to
account for commonality.

Model training uses expectation-maximization algorithms applied to candidate pairs,
iteratively refining match probability estimates until convergence. The system processes
approximately 800 million candidate pairs to generate final match probabilities, applying
threshold-based clustering at 0.9 probability cutoffs for conservative cluster assignment.
This approach identifies 1.012 million unique inventors responsible for 2.273 million
patents between 1875-1955.

B.4.2 Panel Construction

Creating analysis-ready inventor panels requires addressing both career tracking chal-
lenges and the specific requirements of Abowd-Kramarz-Margolis (AKM) two-way fixed
effects estimation. For each disambiguated inventor, I construct balanced yearly observa-
tions spanning their first to last patent, creating annual observations for all intervening
years regardless of patenting activity. This approach enables analysis of both productive
and unproductive periods within inventor careers while providing the temporal conti-
nuity necessary for fixed effects identification.

Firm assignment follows hierarchical rules prioritizing corporate assignees over in-
dividual assignments, using the harmonized firm mapping from Section B.1. For inven-
tors with multiple firm affiliations within a year, assignment uses patent-count-based
weighting, assigning inventors to the firm receiving the plurality of their patents. Miss-
ing location and firm information for non-patenting years is propagated from the nearest



patenting year, preserving inventor mobility patterns without arbitrary interpolation.

Patent quality measurement for the AKM framework requires positive-valued out-
comes suitable for logarithmic transformation, addressed through careful processing of
the Kelly et al. (2021) breakthrough measures. I apply an exponential transformation
using the formula g = 10 - exp(4y — 0.8y?), where y represents the original breakthrough
score, ensuring strictly positive values while preserving meaningful quality variation
across patents. This transformation roughly matches mean and 99th percentile from the
Kogan et al. (2017) patent value distribution. Notice that it is strictly monotone in the
observed range of y.

To handle extreme outliers that could distort fixed effects estimation, I implement
floor values at two stages. During panel creation, individual patent quality measures be-
low 1% of their median are set to this threshold, preserving the underlying quality dis-
tribution while ensuring numerically positive values. Fractional patent measures adjust
for co-invention by dividing quality measures by coinventor count, enabling accurate at-
tribution in the AKM decomposition. Fractional patent measures adjust for co-invention
by dividing quality measures by coinventor count, enabling accurate attribution in the
AKM decomposition: fractional patent measure = patent measure / number of coinven-
tors.

Table Bl presents comprehensive summary statistics for the inventor-level panel.
Panel A covers all 1,012,037 disambiguated inventors, including those with patents as-
signed to individuals rather than firms. The median inventor has a single patent over
a one-year career, reflecting the highly skewed nature of innovative productivity. Panel
B focuses on the 278,344 inventors active for multiple years, revealing more substantial
careers with median length of 8 years and 3 patents. Quality-weighted patent mea-
sures show considerable variation, with the 90th percentile inventor producing nearly 20
quality-weighted patents compared to 3.4 for the median multi-year inventor.

The AKM estimation requires specific sample restrictions to ensure realistic career
patterns suitable for two-way fixed effects identification. I remove inventors with im-
plausibly long careers (>67 years), excessive geographic mobility (>20 states), or extreme
tirm switching behavior (>100 distinct employers). These restrictions prevent spurious
disambiguation matches that could bias firm and worker effect estimates while main-
taining sufficient inventor mobility for identifying separate firm and individual effects.
Recall that I implement the KSS leave-one-out bias-correction, which effectively requires
each firm to be linked to at least two inventors and inventors appearing in at least two
distinct years. In the AKM sample preparation, aggregated inventor-firm spell outcomes
below 1% of the spell-level median are clipped before logarithmic transformation, en-
suring again numerically positive values. Table B2 compares the size of the full panel
and that of the AKM sample.

B.4.3 Validation

Comparison with Akcigit et al. (2022) provides external validation of the disambiguation
process. Table B3 shows that for the overlapping 1940-1955 period, my disambiguation
identifies 239,014 inventors compared to their 300,077, with higher average patents per
inventor (2.5 vs. 2.1) and greater geographic mobility (9.1% vs. 4.7% moving states).
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Table B1: Inventor Panel Summary Statistics

Mean SD P10 P25 P50 P75 P90
m @ 6 @ 6 © @

Panel A: All Inventors
Career Length (years) 403 755 1.00 1.00 1.00 2.00 12.00
Patents 252 761 1.00 1.00 1.00 2.00 4.00
Patents (fractional) 225 697 050 1.00 1.00 2.00 4.00
Breakthroughs 022 198 0.00 0.00 0.00 0.00 0.00
Breakthroughs (fractional) 0.18 166 0.00 0.00 0.00 0.00 0.00
Quality-weighted Patents 385 21.39 039 063 1.10 230 593
Quality-weighted Patents (fractional) 3.35 1893 0.31 0.53 097 203 5.19
Technology Sections 157 098 1.00 1.00 1.00 200 3.00
States 111 046 1.00 1.00 1.00 1.00 1.00
Distinct Firms 032 067 000 0.00 0.00 1.00 1.00
N 1,011,606
Panel B: Inventors in > 2 years
Career Length (years) 12.01 1093 2.00 4.00 8.00 17.00 27.00
Patents 6.37 1376 2.00 2.00 3.00 6.00 12.00
Patents (fractional) 570 12.63 150 2.00 3.00 5.00 11.00
Breakthroughs 064 372 0.00 0.00 0.00 0.00 1.00
Breakthroughs (fractional) 053 3.11 0.00 0.00 0.00 0.00 1.00
Quality-weighted Patents 10.39 3959 122 188 340 7.66 19.82
Quality-weighted Patents (fractional) 9.03 35.04 1.03 1.65 3.01 6.71 17.10
Technology Sections 246 132 1.00 1.00 2.00 3.00 4.00
States 140 080 1.00 1.00 1.00 2.00 2.00
Distinct Firms 072 1.02 0.00 0.00 0.00 1.00 2.00

N

278,407

Note: This table presents summary statistics for the disambiguated inventor panel spanning 1875-1955.
Panel A includes all inventors, while Panel B restricts to inventors active for multiple years. Career length
measures years from first to last patent. Patents and breakthroughs use both standard and fractional (co-
invention adjusted) measures. Quality-weighted patents apply exponential transformation to Kelly et al.
(2021) breakthrough scores. Technology sections count distinct CPC sections, states count distinct inventor
locations, and distinct firms count harmonized firm affiliations.

These differences reflect: (a) different underlying patent datasets; (b) temporal coverage
differences (their data starts in 1940, mine extends to 1955); and (c) richer information
used in my disambiguation process, including technological overlap and assignee rela-
tionships that enable more accurate linking of inventor records across patents.



Table B2: AKM vs Full panel sample sizes

Full Excluding LOO-Connected

Panel  Singletons Sample
1) () (3)
Observations (person-year) 3,847,349 3,169,090 1,310,550
Inventors 944,795 266,536 94,040
Firms 82,042 59,859 18,286

Table B3: Comparison with Akcigit et al. (2022)

Period: 1940-1955

Sample: This Paper AGNS
Number of inventors 239,026 300,077
Patents/year 0.71 0.63
2+ patents (%) 34.9 27.5
5+ patents (%) 10.5 8.1
10+ patents (%) 3.9 3.0
Patents/inventor 2.5 2.1
Moved states (%) 9.1 4.7
Years active 3.5 7.2

Note: This table compares inventor disambiguation results with Akcigit et al. (2022) for the overlapping
1940-1955 period. Differences reflect distinct underlying datasets, temporal coverage (AGNS ends in 1940),
and richer disambiguation information including technological overlap and assignee relationships.

Additional validation comes from comparing disambiguation results against external
benchmarks for highly prolific inventors. Matching patent counts to Wikipedia records
for prominent historical inventors yields high accuracy rates: Thomas Edison (989/1084
patents, 91%), Francis H. Richards (845/894, 95%), Elihu Thomson (623/696, 90%), John
E. O’Connor (999/949, 105%), Carleton Ellis (731/753, 97%), Melvin de Groote (907 /925,
98%), and George Albert Lyon (866/993, 87%).

B.5 Technology-Level Panel Construction

The methodological challenge involves creating panels at the level of technology do-
mains that enable robust quantitative analysis.

B.5.1 Technology definition

The distinction between established and emerging technologies rests on patent activity
patterns during the pre-consolidation baseline period (1880-1894). Established technolo-
gies encompass CPC groups with positive patent activity during this period. Emerging
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technologies comprise CPC groups with zero baseline activity but positive innovation
beginning in 1895 and within 1960 (when my patent data ends).

My analysis of established technologies estimates effects in levels, which requires
comparable technology sizes for effects to be meaningfully comparable and not coun-
feded by levels. To create such units while preserving technological coherence, I im-
plement a bottom-up clustering algorithm that groups related CPC categories based on
both patent volume and hierarchical proximity. The algorithm calculates target cluster
size as total pre-1895 weighted patents divided by desired cluster count (approximately
1,000 clusters).

The clustering process respects the CPC hierarchy’s nested structure, processing lev-
els from most specific (subgroup) to broadest (section). At each level, the algorithm
assigns large individual units (> 75% of target size) their own clusters, groups medium-
sized sibling units (collective size 50-150% of target) into single clusters, and splits large
sibling groups using cumulative distribution boundaries to create approximately equal-
sized clusters.

Post-processing consolidation addresses remaining small clusters through CDF-based
redistribution within sections, ensuring no cluster falls below 30% of target size while
respecting technological boundaries.

The hierarchical clustering algorithm successfully creates balanced technology do-
mains while preserving meaningful technological distinctions. Table B4 demonstrates
that GMW-exposed and unexposed technology clusters exhibit comparable characteris-
tics across key dimensions.

B.5.2 Panel Construction

Technology-level analysis requires measuring each domain’s exposure to Great Merger
Wave activity. In the sample of established technologies (with non-zero patents before
1895), I define a technology to be exposed if GMW firms had any patents in it before
1895. For emerging technologies with zero pre-1895 patents, I define GMW exposure
using the exposure status of related technologies, as measured by CPC hierarchical re-
lationships. In practice, an emerging CPC group is marked as exposed if an established
CPC group in the same CPC subclass had any pre-1895 patents by GMW firms.

Panel construction creates annual technology-year observations with multiple inno-
vation measures: total patent counts, breakthrough innovation, and measures tracking
tirm entry, exit, and inventor mobility patterns. The panels incorporate proportional
weighting for patents with multiple CPC classifications, where each patent-CPC combi-
nation receives weight equal to 1/N (where N represents total classifications), ensuring
aggregate counts sum correctly while preserving technological diversity information.
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Table B4: Technology Cluster Balance by GMW Exposure

Mean SD P10 P25 P50 P75 P90
(1) (2) (3) (4) ©) (6) )

Panel A: No GMW Exposure

Earliest Year (median) 1851.36 9.43 1840.00 1844.00 1850.00 1856.50 1865.00
Earliest Year (mean) 1852.37 896 1840.00 1845.67 1851.67 1857.80 1864.30

Groups 5.56 4.84 1.00 2.00 4.00 7.00 12.00
Subclasses 1.51 0.98 1.00 1.00 1.00 2.00 3.00
Classes 1.07 0.25 1.00 1.00 1.00 1.00 1.00
Sections 1.00 0.00 1.00 1.00 1.00 1.00 1.00

Weighted Patents (std.) 93.69 88.10 30.01 42.83 70.33  111.68 187.06
N 307
Panel B: GMW Exposure

Earliest Year (median) 1852.07 9.96 1840.00 1843.00 1851.50 1858.00 1866.00
Earliest Year (mean) 1853.29 9.61 1840.00 1845.00 1853.22 1859.75 1866.34

Groups 6.91 6.39 1.00 3.00 5.00 9.00 14.00
Subclasses 1.64 1.17 1.00 1.00 1.00 2.00 3.00
Classes 1.13 0.39 1.00 1.00 1.00 1.00 2.00
Sections 1.00 0.00 1.00 1.00 1.00 1.00 1.00

Weighted Patents (std.) 80.61 63.02 27.94 42.15 62.65 98.30  151.47

N 670

Note: This table shows descriptive statistics for established technology clusters by GMW exposure sta-
tus. Earliest year measures temporal origins using both median and mean patent years within clusters.
Groups, subclasses, classes, and sections count distinct CPC categories. Weighted patents (std.) represents
the standard deviation of subgroup-level patent counts within each cluster, demonstrating balanced inno-
vation intensity across exposed and unexposed technologies.
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C Additional results — Impact of the Great Merger Wave
on Merging Firms

This appendix presents additional empirical results supporting the main analysis of how
the Great Merger Wave affected innovation among merging firms.

Section C.1 presents additional evidence on the determinants of the GMW and the
selection of merging firms. Section C.2 shows relative-time event study and pre-merger
innovation trends of individual constituent firms to address concerns about aggregating
tirm outcomes in calendar time. Section C.3 presents robustness checks including: hori-
zontal consolidations only (Figure C5), trimmed samples excluding outliers (Figure C6),
unbalanced panels that restrict to observations within 3 years of each patent (i.e. con-
dition on survival) (Figures C7 and C8), and patent filing dates rather than grant dates
(Figures C9, C10, and Table C4). Section C.4 explores heterogeneity by manufacturing
sectors (Figure C12), integration type (Figure C13), and business success classification
(Figure C14). Section C.5 analyzes R&D laboratory establishment, including event stud-
ies for number of active laboratories (Figures C15 and C16) and heterogeneity by market
concentration and technological area (Figures C17 and C18). Table C5 provides descrip-
tive statistics on firm exits and laboratory establishment.
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C.1 Background Evidence

This section provides additional evidence that mergers were triggered primarily by price
competition, financial pressure, and legal incentives, rather than expectations of future
technological potential. To this end, I (i) document the sharp deflation of wholesale
commodity prices during the 1893-1897 depression, (ii) place consolidating firms in
the distribution of manufacturing firm size circa 1900, (iii) review Lamoreaux’s (1985)
industry-level logit regressions, and (iv) present new probit regressions predicting con-
solidation on firm characteristics.

Figure C1 illustrates the deflationary environment of the 1893-1897 depression. Whole-
sale commodity prices fell sharply (about 15 percent) and recovered only after 1898,
consistent with historical accounts that intensified price competition forced firms to seek
consolidation as a survival strategy. Figure C2 compares the capitalization of consolidat-
ing firms to the overall distribution of firms in the 1900 Moody’s Manual. Consolidating
tirms were somewhat larger on average, but not extreme outliers: they came from the
heart of the size distribution, suggesting that the merger wave was not confined to a few
giant incumbents but affected a broad swath of medium-to-large manufacturers.

Figure C1: Deflationary Nature of the 1893-1897 Depression

1207

Depression of 1893 —

1107

1007

90

Wholesale Commodity Prices (excl. farm products)

807

T T T T T T T
1885 1890 1895 1900 1905 1910 1915
Year

Note: This figure shows wholesale prices for all commodities other than farm products between 1885 and
1915, highlighting the impact of the Depression of 1893-1897. The index base is such that 100 = average
between 1890-1914. Data is from Hanes (2006).

Industry-level selection into consolidation. Table C2 reports results from Lamoreaux
(1985). The outcome is an industry-level indicator for whether the sector experienced
significant horizontal consolidation (1895-1904) from Nelson’s list; industries with only
marginal activity or missing data are excluded. The final sample has 232 industries, 52
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Figure C2: Firm Size (Capitalization) Comparison
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Note: This figure contextualizes the average size of individual firms involved in GMW consolidations as
computed by Nelson (1959) with the capitalization distribution of manufacturing firms attested in the 1900
Moody’s Manual of Industrial Securities.

with consolidation, 180 without. Data on industry characteristics come from the Census
of Manufactures. Lamoreaux (1985)’s specification is:

Pr{Consolidation; = 1} = A([So + B1 Fixed; + By Growth;+

B3 Growth; x HighFixed; + B4 Margin; + Bs Sizei>, (C1)

where A is the logistic function and:

Consolidation: 1 if the industry underwent significant consolidation (1895-1904), 0
otherwise.

Fixed: capital-output ratio (capital / annual output), proxy for fixed-cost burden.
Growth: percent increase in capital, 1889-1899.

HighFixed: 1 if Fixed is above the manufacturing mean, else 0.

Margin: profit margin on sales (earnings per dollar of sales).

Size: capital per establishment (thousand $ / establishments), proxy for large,
mass-production plants.
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Table C2: Industry correlates of consolidation (Lamoreaux, logit)

Model A (Table 4.3) Model B (Table 4.4)

Fixed (capital-output) 1.220 1.240
(0.552) (0.549)
[0.138, 2.302] [0.165, 2.315]
Growth (1889-1899) -0.000702
(0.00439)
[-0.0093, 0.0079]
Growth x HighFixed 0.0109 0.0104
(0.00568) (0.00435)
[-0.0002, 0.0220] [0.0019, 0.0189]
Margin (profit per $ sales) -8.640 -8.650
(2.851) (2.855)
[-14.229, -3.051] [-14.246, -3.054]
Size (capital / establishments) 0.00498 0.00496
(0.00178) (0.00179)
[0.0015, 0.0085] [0.0015, 0.0085]
Constant -1.200 -1.220
Observations 232 232
LR x? 62.30 62.27

Notes: Coefficients are Lamoreaux’s maximume-likelihood logit estimates. Standard errors in parentheses
and 95% confidence intervals in square brackets are back-calculated from the published z-statistics (SE =
|B|/|z]; CI = B+ 1.96 x SE). Confidence intervals assume asymptotic normality and no finite-sample bias
corrections.

Across specifications, industries with thin margin and large, capital-intensive plants
are more likely to consolidate: lower earnings per dollar of sales (an immediate proxy of
price pressure) strongly predict consolidation even conditioning on fixed-cost intensity
and size. The pattern points to consolidation as a response to price competition under
high fixed-cost pressure.

Firm-level selection into consolidation. I estimate probit models predicting whether a
firm was absorbed into a GMW consolidation. The dependent variable is GMW; € {0,1}.
I conduct two separate analyses in two different samples:

1. Moody’s Manual (1900). The sample includes firms listed in the 1900 Moody’s
Manual of Industrial Securities. Treatment firms are GMW constituent firms that
disappeared in a consolidation before 1904 but were still listed independently in
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1900. Controls are independent manufacturing firms that appear in Moody’s and
were not involved in consolidation. Coverage is limited: only a small number of
constituent GMW firms are observed (many had already merged by 1900), and the
Manual covers only about 1,200 firms. Thus this exercise should be read as an
extension of Figure C2—using actual listed constituent firms, rather than Nelson’s
imputed averages, to proxy the position of GMW firms in the size distribution. The
specification is:

Pr{GMW; =1} = <I><'yo + 71 In(Capitalization;) + Y _ vs 1[Sector; = s]) (C2)
S

Sectors are economic sectors defined in Moody’s. Robust standard errors are re-
ported.

2. Patent Record (pre-1895 inventing firms) The sample includes firms linked to the
U.S. patent record with nonzero patenting activity before 1895. Treatment firms are
those that subsequently entered a GMW consolidation; controls are other pre-1895
patenting firms that did not consolidate. This sample is broader in coverage than
Moody’s but still selective, as it excludes firms with no patenting prior to 1895.
Here I can also include technology-area dummies and firm-level pre-1895 patent
counts as additional regressors. The specification is:

Pr{GMW; = 1} = <I><<,b0 + Y ¢ 1[CPC Section; = t] + ¢ Patents 1880—18941-). (C3)
t

Sections are defined from the patent record as the modal section of a firm’s patent
portfolio. Robust standard errors are reported.

Table C3 presents the estimates. Across both samples, the results point to only weak
selection into consolidation. Larger firms were modestly more likely to be absorbed, and
sectoral dummies absorb some variation. Innovation history—measured by pre-1895
patenting—adds little predictive power. Overall, the explanatory power of these models
is minimal: pseudo-R? barely exceeds 0.06 in column (2). These patterns reinforce the
historical interpretation that mergers were not systematically organized around firms’
innovative potential.
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Table C3: Probit models of consolidation participation

Sample: 1900 Moody’s Manual

Outcome: GMW Firm; =1

Sample: Patent Record

) 2 3) )
In(Capitalization) 0.102 Patents 1880-1894 0.017
(0.053) (0.006)

Moody Sections

[-0.001, 0.205]

Tech Areas

[0.006, 0.028]

Metals & Materials 0.532 0.516 Operations & Transport 0.207 0.200
(0.264) (0.264) (0.084) (0.085)

[0.015,1.050] [-0.002, 1.034] [0.042,0.373]  [0.034, 0.366]
Textiles & Apparel -0.519 -0.433 Chemistry & Metallurgy 0.190 0.194
(0.425) (0.430) (0.142) (0.143)

[-1.352,0.314] [-1.276, 0.411] [-0.089, 0.469] [-0.086, 0.474]
Misc. Manufacturing 0.212 0.242 Textiles & Paper -0.034 -0.039
(0.257) (0.259) (0.170) (0.171)

[-0.291, 0.716]  [-0.266, 0.751] [-0.368, 0.300] [-0.374, 0.296]
Mining & Extraction -0.128 -0.119 Construction 0.007 0.011
(0.277) (0.279) (0.147) (0.147)

[-0.671, 0.415]  [-0.666, 0.428] [-0.281,0.294]  [-0.277, 0.298]
Food & Tobacco 0.609 0.619 Mechanics 0.055 0.052
(0.344) (0.348) (0.107) (0.108)

[-0.066, 1.284]  [-0.063, 1.301] [-0.155,0.266]  [-0.159, 0.263]
Misc. Non-Manufacturing -0.178 -0.163 Physics -0.058 -0.087
(0.264) (0.266) (0.144) (0.146)

[-0.695, 0.339] [-0.685, 0.359] [-0.341, 0.225]  [-0.373, 0.199]
Electricity -0.094 -0.212
(0.168) (0.202)

[-0.423,0.234] [-0.607, 0.183]
Other Technology 0.611 0.459
(0.206) (0.226)

[0.207,1.014]  [0.016, 0.902]
Constant -1.796 -3.288 Constant -2.255 -2.310
(0.200) (0.814) (0.072) (0.074)

[-2.189, -1.404] [-4.883, -1.693] [-2.397, -2.114] [-2.455, -2.164]
Pseudo R? 0.053 0.061 Pseudo R? 0.010 0.041

GMW Firms 40 40 GMW Firms 188 188

Non-GMW Firms 917 917 Non-GMW Firms 11722 11722

Notes: Dependent variable is an indicator for GMW constituent firm. Columns 1 and 2 use firms listed
in Moody’s Manual, 1900. Columns 3 and 4 use firms in the patent record with nonzero pre-1895 patents.
Standard errors in parentheses, 95-percent confidence intervals in brackets.

C.2 Event Study in Relative Time

One might worry that defining treatment effects in calendar time masks pre-trends
around specific merger dates. To address this concern, I also estimate a relative-time
specification using the bias-correction method by Sun and Abraham (2021). The specifi-
cation is:
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30
Yite = &; + Opc + Z Bml[t — ED; = m]+
m=—10,m#—1 (C4)

Klﬂ[t —ED; < —10] + Kzﬂ[t —ED; > 30] + €ite,

where i indexes firms, t years, ¢ technological areas, m relative time, ED; is year of i
consolidated (for the first time, if multiple consolidations are recorded). The sample
runs from 1885 to 1930, and standard errors are clustered at the firm level. The event
study effects of interest are captured by B;,,. The x terms bin remote observations so
that the sample is balanced in relative time. I use the same IPW weights as in the main
specification.

Figure C3 plots the resulting event study estimates for the key outcomes of patents
(panel a) and breakthroughs (panel b). The results support the validity of my preferred
approach.

Another potential concern is that aggregating the pre-merger output of constituent
firms into a consolidation-level sum might mask divergent firm-level innovation trends.
To address this concern, I implement an additional pre-trends test that examines the
innovation trajectories of individual constituent firms leading up to their consolidation
dates.

The specification is:

—2
Vite = i +6c+ ) Pul[t — ED; = m] + €, (C5)
m=-10

where i indexes firms, t years, ¢ technological areas, m relative time, ED; is the event date.
The sample runs from 1885 to 1903, and standard errors are clustered at the firm level.
The event study effects of interest are captured by B,,. The sample includes the same
control firms as the main analysis. The analysis employs inverse probability weighting
based on the pre-1895 patenting distribution of individual constituent firms, rather than

the consolidation-level aggregates used in the main specification.
Figure C4 plots the resulting event study estimates for the key outcomes of patents

(panel a) and breakthroughs (panel b). Pre-trends are clearly flat.
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Figure C3: Event Study Specification in Relative Time
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(b) Breakthrough patents

Note: This figure presents event study estimates from equation (C4), showing consolidation effects in
relative time. Panel (a) shows results for total patents, Panel (b) shows results for breakthrough patents.
Each panel displays p,, estimates and their 95 percent confidence intervals. Standard errors are clustered
at the firm level, and estimated address treatment-time heterogeneity using the Sun and Abraham (2021)
method.
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Figure C4: Pre-trends in Relative Time—Constituent Firms

Patents
N
1

Relative Time

(a) All patents

R
.67
n
<
b0
=
e
< 47
X
[l
o
m
27

Relative Time

(b) Breakthrough patents

Note: This figure presents event study estimates from equation (C5), showing pre-merger innovation
trends of constituent firms. The analysis disaggregates GMW consolidations to their component firms
and examines innovation paths relative to each firm'’s specific merger date. Panel (a) shows results for
total patents, Panel (b) shows results for breakthrough patents. The sample spans from 10 years before
merger (m = —10) to one year before merger, with m = —1 as the omitted category. Each panel displays
B estimates and their 95 percent confidence intervals. Standard errors are clustered at the firm level.
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C.3 Robustness

Figure C5: Horizontal consolidations
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on innovation, restricting the sample to consolidations classified as horizontal mergers. Panel (a)
shows results for total patents, Panel (b) shows results for breakthrough patents. Each panel displays B
estimates and their 95 percent confidence intervals. Standard errors are clustered at the firm level.
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Figure C6: Trimmed sample
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on innovation using a trimmed sample that excludes top and bottom 5 percent of total patenting
distributions by GMW status. Panel (a) shows results for total patents, Panel (b) shows results for break-
through patents. Each panel displays f,; estimates and their 95 percent confidence intervals. Standard
errors are clustered at the firm level.
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Figure C7: Conditioning on Firm Survival—Intensive Margin
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on innovation using an unbalanced panel where I only keep observations within three years of a
firm’s first and last patent. This also allows me to include consolidations that were later bought by other
firms. Panel (a) shows results for total patents, Panel (b) shows results for breakthrough patents. Each
panel displays B, estimates and their 95 percent confidence intervals. Standard errors are clustered at the
firm level.
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Figure C8: Including later acquired consolidations (unbalanced sample)—Extensive
Margin
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Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on the probability of beginning to patent, using an unbalanced panel that includes consolidations
which were themselves acquired by other firms during the sample period. The figure displays B, esti-
mates and their 95 percent confidence intervals for firms that had not patented prior to 1895. Standard

errors are clustered at the firm level.

26



Figure C9: Filing year—Intensive Margin
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on innovation using patent filing dates rather than grant dates. Panel (a) shows results for total
patents, Panel (b) shows results for breakthrough patents. Each panel displays f,, estimates and their 95
percent confidence intervals. Standard errors are clustered at the firm level.
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Figure C10: Filing year—Extensive Margin
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Figure C11: Event study estimates

Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on the probability of beginning to patent, using patent filing dates rather than grant dates. The
figure displays B, estimates and their 95 percent confidence intervals for firms that had not patented prior
to 1895. Standard errors are clustered at the firm level.
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Table C4: Effect of Consolidation on Firm-Level Patenting—Filing year

Margin: Intensive Extensive
Outcome: Patents Breakthroughs Has lab Started patenting Has lab
1) (2) ©) (4) ©)
GMW Firm 6.363 0.703 0.158 0.235 0.045
(1.939) (0.298) (0.032) (0.034) (0.014)
[2.562, 10.164] [0.119, 1.286] [0.096, 0.220] [0.168, 0.303] [0.016, 0.073]
Controls Y Y Y Y Y
Treated pre-mean 1.884 0.093 0.017 0.000 0.001
Control post-mean 0.665 0.060 0.017 0.134 0.011
# Firms 12,156 12,156 12,156 834 834
N 559,176 559,176 559,176 38,310 38,310

Note: This table reports static difference-in-differences estimates of the effect of consolidation on firm-level innovation outcomes (Equation 2),
using patent filing year rather than issue year. Notice that firms are resorted between intensive and extensive margin once pre-1895 patenting is
measured with filing dates. patenting Columns 1-3 show results for the intensive margin (firms with pre-merger patents), while columns 4-5 show
extensive margin effects (firms with no pre-merger patents). The dependent variables are: patent counts (col. 1), breakthrough patent counts (col.
2), probability of having at least one R&D lab (col. 3 and col. 5), probability of patenting at least once (col. 4). “GMW Firm” is an indicator for firms
that underwent consolidation during the Great Merger Wave (1895-1904). Intensive margin regressions include time fixed effects by technological
area, while extensive margin include time fixed effects by economic sector. Standard errors clustered at the firm level are shown in parentheses. 95
percent confidence intervals are reported in square brackets.



C.4 Heterogeneity

Figure C12: Heterogeneity in Consolidation Effects by Sector
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Note: This figure shows how the effect of consolidation on innovation varies across manufacturing sectors
defined by 1949 SIC industry codes, as reported in Nelson (1959). Panel (a) shows results for total patents,
Panel (b) shows results for breakthrough patents. Each bar shows the estimated effect of consolidation
with error bars representing 95 percent confidence intervals computed from standard errors clustered at

the firm level.

Figure C13: Heterogeneity in Consolidation Effects by Integration Type
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Note: This figure shows how the effect of consolidation on innovation varies by the type of integration,
as reported in Nelson (1959). Panel (a) shows results for total patents, Panel (b) shows results for break-
through patents. Each bar shows the estimated effect of consolidation with error bars representing 95
percent confidence intervals computed from standard errors clustered at the firm level.
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Figure C14: Heterogeneity in Consolidation Effects by Success (Livermore 1935)
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Note: This figure shows how the effect of consolidation on innovation correlates with long-term business
success, as classified by Livermore (1935). Firms are categorized as successful, moderately successful, or
unsuccessful based on their subsequent business performance. Panel (a) shows results for total patents,
Panel (b) shows results for breakthrough patents. Each bar shows the estimated effect of consolidation
with error bars representing 95 percent confidence intervals computed from standard errors clustered at
the firm level.
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C.5 R&D Labs

Figure C15: Number of active labs — intensive margin firms
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Note: This figure presents event study estimates from equation (1) showing the firm-level effect of consol-
idation on the number of active R&D laboratories for firms that had patented prior to 1895. Observations
are grouped in 3-year bins due to limited variation in laboratory establishment. The figure displays S,
estimates and their 95 percent confidence intervals. The x-axis reports the first year in each bin. Standard
errors are clustered at the firm level.
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Figure C16: Number of active labs — extensive margin firms
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Note: This figure presents event study estimates from equation (1) showing the firm-level effect of con-
solidation on the number of active R&D laboratories for firms that had not patented prior to 1895. Ob-
servations are grouped in 3-year bins due to limited variation in laboratory establishment. The figure
displays B, estimates and their 95 percent confidence intervals. The x-axis reports the first year in each
bin. Standard errors are clustered at the firm level.

Figure C17: Heterogeneity in Consolidation Effects by Market Concentration
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Note: This figure shows how the effect of consolidation on R&D laboratory establishment varies with
market concentration. Firms are categorized into three groups: those without reported market share
information (likely smaller and less successful mergers), those achieving substantial but less than 70%
market share, and those capturing over 70% market share. Market share data comes from Lamoreaux
(1985). Panel (a) shows the estimated effect on probability of having at least one lab, Panel (b) shows the
estimated effect on number of active labs. Error bars represent 95 percent confidence intervals computed
from standard errors clustered at the firm level.
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Figure C18: Heterogeneity in Consolidation Effects by Broad Technological Area
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Note: This figure shows how the effect of consolidation on R&D laboratory establishment varies across
broad technological areas. Firms are categorized into three groups according to the CPC section where
they patent the most: (i) sections C, G and H for science-based technologies, (ii) sections B, F and Y for
engineering and industrial technologies, (iii) sections A, D and E for infrastructure and consumer-oriented
technologies. Panel (a) shows the estimated effect on probability of having at least one lab, Panel (b)
shows the estimated effect on number of active labs. Error bars represent 95 percent confidence intervals

computed from standard errors clustered at the firm level.
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C.6 Other descriptive statistics on GMW consolidations

Table C5: Additional Descriptive Statistics on GMW Firms

Stopped Has Active Has Any
Year Patenting (%) & Dated Lab (%) Lab (%)
GMW Non-GMW GMW Non-GMW GMW Non-GMW
(1) ) 3) (4) () (6)

Panel A: Intensive Margin Firms

1900 51 67.6 10.1 1.3
1910 7.6 72.6 17.7 1.6
1920 13.9 78.3 26.6 2.2
1930 241 85.5 34.2 2.6
By 1946 54.1 4.7

Panel B: Extensive Margin Firms

1900 3.6 6.4 1.3 0.2
1910 19.3 20.8 4.6 0.4
1920 36.1 41.0 7.2 1.0
1930 47.0 65.8 12.4 2.0
By 1946 20.3 44

Note: This table presents additional descriptive statistics on R&D laboratory establishment and firm exit.
In columns 1 and 2, the outcome ‘Stopped Patenting’ is computed for firms that ever patent in the sample
period, and records whether the firm has been issued its last patent before a given year—it proxies for
firm exit. Columns 3 and 4 report laboratories with non-missing establishment dates, while columns 5
and 6 show an indicator for whether the firm ever appears in the NRC surveys before 1946 (regardless
of establishment date). Results are shown separately for intensive margin firms (those with pre-merger
patents) and extensive margin firms (those without pre-merger patents), and GMW status.
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D Alternative inference approaches

This appendix presents results from three alternative inference approaches: placebo
mergers, synthetic control, and synthetic difference-in-differences. These methods cre-
ate synthetic counterfactuals that aggregate multiple control units to more closely mirror
actual consolidation structure.

Figures D1, D2, and D3 present event study estimates demonstrating consistency
with main findings. Bayesian Model Averaging systematically combines evidence across
all four approaches to account for model uncertainty (Table D1).

D.1 Results

The three alternative approaches each construct counterfactuals that aggregate multiple
control units, more closely resembling the structure of treatment units. The placebo
merger approach randomly groups control firms within technological areas to match
treatment units’ pre-merger innovation levels, then fits the same specification as Equa-
tion 1. Standard errors that account for variability in placebo construction are com-
puted via bootstrap (1,000 iterations). The synthetic control method constructs optimal
weighted combinations of control firms to match each treatment unit’s pre-merger tra-
jectory using constrained optimization. Synthetic difference-in-differences combines el-
ements of both difference-in-differences and synthetic control by assigning weights to
both units and time periods.

For the synthetic control and SDID approaches, outcomes are first residualized with
respect to year-by-technological-area fixed effects to control for technology-specific trends
outside their specific optimization routines (Arkhangelsky et al. 2021).

Figures D1, D2, and D3 present event study estimates from each approach. All three
methods yield results that closely align with the main difference-in-differences findings.
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Figure D1: GMW Firms vs. Placebo Mergers
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates comparing actual GMW consolidations to placebo merg-
ers constructed from control firms. Within each technological area, control firms are randomly selected
to match treatment units’ pre-merger innovation levels, creating synthetic consolidations. Results are
based on 1,000 bootstrap iterations. Panel (a) shows results for total patents, Panel (b) shows results for
breakthrough patents. The analysis demonstrates that randomly constructed mergers fail to generate the
sustained innovation increases observed for actual GMW consolidations, supporting the causal interpre-
tation of the main results.
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Figure D2: SC mergers
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates from synthetic control analysis following Abadie (2021).
Optimal weighted combinations of control firms are constructed to match each treatment unit’s pre-merger
innovation trajectory. Outcomes are residualized with respect to year-by-technological-area fixed effects
before applying the synthetic control procedure. Panel (a) shows results for total patents, Panel (b) shows
results for breakthrough patents. The results closely align with the main difference-in-differences findings,

confirming substantial post-merger innovation increases.
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Figure D3: SDID mergers
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(b) Event study for breakthrough patents

Note: This figure presents event study estimates from synthetic difference-in-differences analysis following
Arkhangelsky et al. (2021). This method assigns weights to both units and time periods, combining ele-
ments of difference-in-differences and synthetic control. Outcomes are residualized with respect to year-
by-technological-area fixed effects before implementing SDID. Panel (a) shows results for total patents,
Panel (b) shows results for breakthrough patents. The approach confirms substantial post-merger innova-

tion increases consistent with alternative specifications.
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D.2 Bayesian Model Averaging

Bayesian Model Averaging (BMA) provides a principled framework for combining re-
sults from multiple competing models while explicitly acknowledging model uncer-
tainty. Rather than selecting a single ‘best’ specification, BMA treats each empirical
approach as a plausible representation of the underlying data-generating process and
combines their estimates using posterior model probabilities as weights.

General BMA Framework. In the standard BMA framework, the posterior distribu-
tion of a parameter of interest 6 given data D is computed as a weighted average across
M competing models:

M
P(6|D) = Y P(6]My, D) - P(My|D) (D1)
m=1
where P(0|M,,, D) represents the posterior distribution of # under model M,,, and
P(M,,|D) denotes the posterior probability of model M,, given the observed data. The
posterior model probabilities are derived using Bayes’ rule:

— P(D|Mm) P(Mm)
Y1, P(D|M;) - P(M;)

P(My|D) (D2)

where P(D|M,,) is the marginal likelihood (or model evidence) and P(M,,) repre-
sents the prior probability assigned to model M,,. The marginal likelihood measures
how well model M, predicts the observed data, integrating over the uncertainty in
model parameters.

RMSE-Based Approximation. Computing exact marginal likelihoods across the
heterogeneous estimation approaches employed here—difference-in-differences, placebo
analysis, synthetic control, and synthetic difference-in-differences—presents significant
computational challenges. Traditional approaches using Bayesian Information Crite-
ria are not readily applicable given the distinct methodological frameworks and non-
standard procedures.

I therefore employ a simplified approximation based on overall in-sample root mean
squared error (RMSE) to construct posterior model probabilities. This approach treats
RMSE as an inverse measure of model fit, with the posterior probability of model m
proportional to:

1

P D D
(Mn|D) o e (D3)
After normalization across all models, the posterior probability becomes:
1/RMSE
P(My|D) = —/RMSEm (D4)

B Y1, 1/RMSE;

This approximation is reasonable for several reasons. First, RMSE provides a natural
measure of predictive accuracy that is comparable across the different estimation pro-
cedures. Second, models with lower prediction errors should intuitively receive greater
weight in the averaging process, which this approach achieves. Third, the relationship
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between RMSE and marginal likelihood has theoretical foundations: under Gaussian er-
ror assumptions, the log marginal likelihood is proportional to the negative log of the
residual sum of squares, making RMSE-based weighting a reasonable approximation to
exact Bayesian model probabilities.

BMA Estimation. The BMA point estimate combines individual model estimates
using posterior probabilities as weights:

4
Bema = Y_ Bm - P(Mu|D) (D5)
m=1

The BMA variance accounts for both within-model parameter uncertainty and between-
model uncertainty arising from the spread of estimates across specifications:

4
Var(Bama) = Y P(Mu|D) [Var(Bu| M, D) + (B — Brma)?| (D6)
m=1

The first term within brackets captures the parameter uncertainty conditional on each
model, while the second term reflects the uncertainty about which model best represents
the true data-generating process.

Table D1 presents the BMA results alongside individual model estimates. The pos-
terior weights reveal that all four approaches receive substantial support from the data,
though the IPW and Placebo difference-in-differences receive the most. The BMA es-
timates of 6.35 additional patents and 0.58 additional breakthroughs per firm per year
align closely with the main inverse probability weighted results.
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Table D1: BMA

Model: IPW DiD Placebo DiD Synth. Control Synth. DiD BMA

Panel A: Patents

GMW Firm 5.99 6.80 7.13 5.37 6.35
(1.91) (2.49) (2.00) (1.91) (2.23)
[2.24,9.73]  [1.92,11.69] [3.20,11.06] [1.63,9.11]  [1.97,10.72]
BMA weight  0.380 0.380 0.112 0.128 —

Panel B: Breakthroughs

GMW Firm 0.56 0.60 0.63 0.50 0.58
(0.18) (0.23) (0.21) (0.18) (0.21)
[0.21,0.92] [0.16,1.05] [0.21,1.04] [0.14,085]  [0.17,0.98]
BMA weight ~ 0.348 0.376 0.128 0.147 —

Note: This table presents Bayesian Model Averaging results combining evidence from four identification strategies: inverse probability weighted
difference-in-differences (IPW DiD), placebo mergers, synthetic control, and synthetic difference-in-differences. Posterior model probabilities are
computed using RMSE-based approximations. Panel A shows results for total patents, Panel B shows results for breakthrough patents. The BMA
estimates incorporate both parameter uncertainty within specifications and model uncertainty across specifications. Standard errors in parentheses,
95 percent confidence intervals in brackets. BMA weights show posterior probabilities assigned to each approach.



E Additional results — Corporate R&D Labs and Innova-
tive Productivity

This appendix presents additional results and validation tests for the R&D laboratory
analysis.

Table E1 reports breakthrough rates by firm assignment status and lab proximity. Ta-
ble E2 shows comprehensive AKM variance decomposition results, comparing plug-in
and bias-corrected estimates across multiple outcomes. Figures E3, E4, and E5 vali-
date core AKM framework assumptions through symmetry tests, exogenous mobility
assessments, and additive separability checks. Section E.1 implements the Bonhomme,
Lamadon, and Manresa (2019) framework as an alternative to AKM, using discrete
worker and firm types to confirm main findings.

Table E1: Breakthrough rates by firm assignment and lab proximity

Patents Breakthroughs Breakthrough
N (% of total) N (% of total) Rate (%)
@ 2) ®)
Within 50km of a dated & open lab 108,720 22,519 20.7
(7.2) (16.2)
Within 50km of an undated lab 24,925 5,829 23.4
(1.7) (4.2)
Outside 50km of any lab (but firm has one) 87,757 14,929 17.0
(5.8) (10.7)
Firms without labs 357,062 39,278 11.0
(23.8) (28.2)
Not assigned to firms 922,224 56,699 6.1
(61.5) (40.7)
Total 1,500,688 139,254 9.3
(100.0) (100.0)

Note: This table shows breakthrough rates by patent assignment status and proximity to R&D laboratories,
1905-1940. Patents are categorized by inventor location relative to firm labs and assignment type. Break-
through rates calculated using the Kelly et al. (2021) measure. Results demonstrate substantial quality
variation across organizational configurations.
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Figure E1: Distribution of Firm and Inventor Fixed Effects by Lab Status
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(b) Firm Fixed Effects by Lab Status

Note: Panel (a) shows the distribution of estimated inventor fixed effects from the AKM model, separated
by whether inventors work at firms with or without R&D laboratories. Panel (b) shows the corresponding
distribution of firm fixed effects. The virtually identical inventor distributions but shifted firm distribu-
tions indicate that laboratories enhance firm productivity rather than merely attracting superior talent.
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Table E2: AKM Variance decomposition: additional outcomes and naive estimates

Outcome: QW Patents Breakthroughs UW Patents
Var(y) 1.784 0.197 1.158
Var(e) 0.664 0.086 0.496

Panel A. Plug-in Variance Decomposition

Var(ip) 30.77 26.31 36.97
Var(a) 90.91 83.64 97.84
2-Cov(y,w)  -21.68 -9.95 -34.80

Panel B. Bias-corrected Variance Decomposition

Var(y) 32.84 39.09 66.71
Var(a) 75.50 37.38 88.19
2 - Cov(y, ) -8.34 23.54 -54.90
# Spells 227,284 227,284 227,284
# Firms 18,286 18,286 18,286
# Inventors 94,040 94,040 94,040
% Movers 61.38 61.38 61.38

Note: This table reports variance decomposition results from the AKM model (Equation 6) for three out-
come measures: quality-weighted (QW) patents, breakthrough patent counts, and unweighted (UW)
patent counts. Panel A shows plug-in estimates that do not account for limited mobility bias; Panel
B shows bias-corrected estimates using the Kline, Saggio, and Selvsten (2020) method. The substantial
differences between plug-in and bias-corrected estimates highlight the importance of addressing limited
mobility bias in AKM estimation.
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Figure E2: Validation of AKM Model Assumptions
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Note: This figure tests the assumptions of the AKM framework using quality-weighted patent output.
Panel (a) plots changes in inventor output between spells at different firms (triangles) against changes in
firm fixed effects (circles). Moves are organized by quartile of firm effects, e.g., the top left quadrant shows
changes when moving from first quartile firms to firms in quartiles one through four. Panel (b) shows
average model residuals by deciles of inventor and firm effects.
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Figure E3: AKM Validation: Symmetry Test for Inventor Mobility
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Note: This figure examines the distribution of changes in firm fixed effects experienced by mobile inven-
tors. The histogram shows changes in firm fixed effects when inventors move between firms. Under the

assumption of exogenous mobility, these changes should be distributed symmetrically around zero.
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Figure E4: AKM Validation: Output changes vs Firm effect changes Including Pseudo-
Firms
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Note: This figure extends the main validation test shown in Figure E2 by including transitions to and
from pseudo-firms (unassigned patents and personal assignments). The plot shows changes in inventor
output (triangles) and corresponding changes in firm fixed effects (circles) for moves involving different
firm quartiles and pseudo-firm states.
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Figure E5: AKM Validation: Additive Mobility and Perfect Negative Symmetry Test

Change in opposite direction

T T T T T
-2 -1 0 1 2
Change in one direction

® A Outcome between moves Perfect negative symmetry — Best fit

Note: This figure tests the additive separability assumption of the AKM framework by examining bidirec-
tional moves between firms. The x-axis shows changes in inventor output when moving in one direction
(e.g., from firm A to firm B), while the y-axis shows changes when moving in the opposite direction (from
firm B to firm A). Under perfect negative symmetry, these changes should be equal in magnitude but
opposite in sign, yielding a slope of -1. The close alignment between the observed pattern (best fit line)
and the perfect negative symmetry line provides strong support for the additive separability assumption
underlying the AKM model.
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E.1 BLM

As an additional robustness check, I implement the semi-structural approach of Bon-
homme, Lamadon, and Manresa (2019) (BLM) as an alternative to the AKM framework.
The BLM method addresses several limitations of the standard AKM approach by mod-
eling both worker and firm heterogeneity as discrete types rather than continuous fixed
effects. This parametric approach requires weaker identifying assumptions and avoids
the limited mobility bias that can affect AKM estimation in samples with sparse firm-to-
tirm transitions. Additionally, the BLM framework naturally accommodates complemen-
tarities between worker and firm types, allowing for richer interaction patterns than the
purely additive AKM specification. However, relying on few firm clusters determined
from the productivity distribution greatly limits our investigation of the relationship
between R&D labs and firm-level productivity.

The BLM estimation procedure uses k-means clustering to classify firms into a small
number of discrete types based on their earnings distributions (in this application, in-
ventor productivity distributions), then estimates a finite mixture model with discrete
worker types. Because no variance correction is necessary, I apply this method to all the
data I have. The specification includes four firm types and three worker types. This di-
mensional reduction necessarily limits the share of variance that can be attributed to firm
heterogeneity, since the model constrains all firm-level variation to operate through just
four discrete categories. Figure E6 shows the estimated work-type distribution across
firm classes.

Table E3 presents the BLM variance decomposition results alongside the same sam-
ple breakdown used in the main AKM analysis. Consistent with the AKM findings, firm
effects account for a substantial share of productivity variance, with this share increas-
ing markedly between the early period (1875-1904) and the later period (1905-1950) as
industrial R&D became more prevalent. The firm contribution is somewhat lower than
in the AKM specification, but this mechanical attenuation reflects the constraint of fitting
all firm heterogeneity into just four discrete types.

Figure E7 shows average productivity by worker type and firm type, revealing nearly
parallel productivity profiles across firm types for each worker category. This par-
allel pattern indicates negligible complementarities between worker and firm types—
highly productive workers gain approximately the same benefit from working at high-
productivity firms as do workers of other types. Figure E8 demonstrates that the second-
highest-productivity firm types disproportionately include large firms and lab-owning
organizations, confirming that R&D infrastructure is associated with enhanced innova-
tive productivity even within this more structured parametric framework. Interestingly,
the highest-productivity firm type contains relatively few large corporations or lab own-
ers, potentially reflecting highly productive entrepreneurial firms where exceptional in-
dividual inventors operate outside traditional corporate R&D structures.
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Table E3: BLM Variance decomposition

Full sample 1875-1904 1905-1950

Sample: (1) 2 3)
Var(y — X'B) 1.701 1.435 1.966
R? 0.678 0.665 0.667
Var(y)/Var(yp + «) 0.174 0.083 0.195
Var(a)/Var(¢ + ) 0.816 0.879 0.822
2Cov(y,a)/Var(p+a)  0.010 0.038 -0.017
Corr(yp, a) 0.014 0.070 -0.022
Spells 1,164,122 361,017 842,147
Firms 82,007 21,940 66,224
Inventors 944,795 310,204 677,079
Movers (%) 11.25 8.89 12.65

Note: This table reports BLM variance decomposition using discrete worker and firm types (4 firm classes,
3 worker types). Column 1 shows results for the full sample (1875-1950); columns 2-3 show results for
early (1875-1904) and later (1905-1950) sub-samples. The sample is larger than in the AKM analysis
because BLM does not require the same bias correction restrictions. Results confirm main AKM findings
with firm share increasing from early to later period.
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Figure E6: Worker Type Composition Across Firm Classes

Type Proportion

Firm Class

I Worker Type 1
0 Worker Type 2
B Worker Type 3

Note: This figure shows the distribution of worker types across firm classes in the BLM model. The stacked
bars represent the proportion of each worker type (Types 1, 2, and 3) within each of the four firm classes.
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Figure E7: Average Productivity by Worker Type and Firm Class

Average Producivity
o
1

Firm Class

—=— Worker Type 1 Worker Type 2~ —*— Worker Type 3

Note: This figure shows average productivity by worker type across firm classes. Nearly parallel lines
indicate negligible complementarities: all worker types benefit similarly from higher-productivity firms,
confirming additive structure.
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Figure E8: Firm Characteristics by Productivity Class
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Note: This figure shows the spell-weighted share of large firms ("Big Firms") and laboratory-owning firms
("Firms with Labs") within each of the four firm classes estimated by the BLM model. Firm classes are
ordered by average productivity, with Class 4 representing the highest-productivity category. The figure
demonstrates that the second-highest productivity class is more likely to include large corporations and
firms with dedicated R&D laboratories, confirming the association between firm size, R&D infrastructure,
and innovative productivity. The highest-productivity class (Class 4) shows limited representation of large
firms and labs, potentially reflecting highly productive entrepreneurial firms where exceptional inventors
work outside traditional corporate structures.
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F Additional results — Impact of the Great Merger Wave
on Aggregate U.S. Innovation

This appendix presents additional results and robustness checks for the aggregate-level
innovation analysis.

Table F1 examines effects on number of active firms, inventors, and firm patent share.
Table F2 demonstrates robustness to alternative numbers of size-balanced technology
clusters. Table F3 tests sensitivity to vintage fixed effects inclusion. Table F4 explores
heterogeneity by GMW exposure intensity using terciles rather than binary treatment.
Tables F5 and F6 provide additional emerging technology results, examining exposure
intensity effects and robustness to vintage controls. Section F.1 calculates the overall
magnitude of GMW impact on American innovation, translating empirical estimates
into aggregate breakthrough counts (Table F7).
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Table F1: Effect of Consolidation Exposure on Technology-Level Innovation—Additional Outcomes

Outcome: Active Firms

Active Inventors

Firm Patent Share

Panel A: Overall Effect

Post x GMW 2.182 3.175 2.602
(0.460) (1.571) (0.728)
[1.279, 3.084] [0.093, 6.257] [1.173, 4.030]

Panel B: Heterogeneity

Post x GMW x Science-Based 3.662
(1.582)
[0.558, 6.766]

6.016
(4.087)
[-2.003, 14.035]

3.234
(1.617)
[0.061, 6.407]

Post x GMW x Other Tech 1.950 2.731 2.503
(0.468) (1.680) (0.806)
[1.032, 2.868] [-0.566, 6.028] [0.920, 4.085]
Year x CPC Section FE Y Y Y
Year x Vintage Tercile FE Y Y Y
Technologies 977 977 977
N 59,597 59,597 59,597

Note: This table reports difference-in-differences estimates of the effect of consolidation exposure on additional technology-level outcomes (Equa-
tion 10). The dependent variables are: number of active firms (col. 1), number of active inventors (col. 2), and share of patents assigned to firms
versus other assignees (col. 3). Panel A shows overall effects; Panel B shows heterogeneity by science-based (CPC sections C, G, H) versus other
technologies. Standard errors clustered at the technology level are shown in parentheses. 95 percent confidence intervals are reported in square
brackets.
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Table F2: Effect of Consolidation Exposure on Technology-Level Innovation—By Number of Clusters

Patents Breakthroughs
Target Clusters (k): 750 1000 1500 750 1000 1500
Panel A: Overall Effect
Post x GMW 2.304 1.139 0.838 0.719 0.374 0.374
(2.508) (1.664) (0.895) (0.356) (0.267) (0.158)

[-2.621, 7.228]

Panel B: Heterogeneity

[-2.126, 4.403]

[-0.917, 2.593]

[0.020, 1.418]

[-0.151, 0.899]

[0.064, 0.683]

Post x GMW X Science-Based 8.919 7.388 1.962 4.677 3.472 2.690
(7.025) (4.740) (2.781) (1.986) (1.563) (0.955)

[-4.873, 22.711] [-1.914, 16.690] [-3.493, 7.416] [0.779, 8.575] [0.405, 6.539] [0.817, 4.562]
Post x GMW x Other Tech 1.247 0.162 0.658 0.087 -0.111 0.004
(2.662) (1.746) (0.937) (0.239) (0.175) (0.096)

[-3.979, 6.472]

[-3.264, 3.587]

[-1.180, 2.496]

[-0.382, 0.556]

[-0.455, 0.234]

[-0.184, 0.192]

Year x CPC Section FE Y Y Y Y Y Y
Year x Vintage Tercile FE Y Y Y Y Y Y
Technologies 742 977 1,435 742 977 1,435
N 45,262 59,597 87,535 45,262 59,597 87,535

Note: This table tests robustness to alternative numbers of target clusters used to construct size-balanced technology domains. The baseline analysis
uses k=1000 clusters; this table shows results using k=750 and k=1,500 clusters as well. The dependent variables are total patents (columns 1-3)
and breakthrough patents (columns 4-6) at the technology-year level. GMW exposure is defined as having any pre-1895 patents held by firms
that subsequently participated in the Great Merger Wave. Standard errors clustered at the technology level are shown in parentheses. 95 percent
confidence intervals are reported in square brackets.
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Table F3: Effect of Consolidation Exposure on Technology-Level Innovation—No Vintage FEs

Outcome: Patents Breakthroughs Patents Breakthroughs

Panel A: Overall Effect
Post x GMW 2.447 0.510 2.161 0.490
(1.730) (0.272) (1.713) (0.264)
[-0.949, 5.842] [-0.025, 1.045] [-1.200, 5.522] [-0.028, 1.008]

Panel B: Heterogeneity

Post x GMW x Science-Based 11.198 3.907 10.861 3.673
(4.863) (1.577) (4.811) (1.528)
[1.655, 20.740] [0.813, 7.002] [1.421, 20.302] [0.674, 6.672]
Post x GMW x Other Tech 1.045 -0.034 0.768 -0.020
(1.841) (0.173) (1.823) (0.168)
[-2.568, 4.659] [-0.373, 0.305] [-2.809, 4.345] [-0.350, 0.310]
Excluding GMW firms N N Y Y
Year x CPC Section FE Y Y Y Y
Year x Vintage Tercile FE N N N N
Technologies 977 977 977 977
N 59,597 59,597 59,597 59,597

Note: This table reports difference-in-differences estimates excluding vintage fixed effects from the main specification (Equation 10). The baseline
specification includes year fixed effects by three vintage groups based on terciles of technology-level median earliest patent year. This robustness
check removes these vintage controls (v,;) while maintaining year fixed effects by CPC section and technology fixed effects. The dependent
variables are total patents and breakthrough patents, with columns 3 and 4 excluding direct contributions from GMW firms. Standard errors
clustered at the technology level are shown in parentheses. 95 percent confidence intervals are reported in square brackets.



Table F4: Effect of Consolidation on Technology-Level Innovation—Exposure Intensity

Outcome: Patents Breakthroughs
Panel A: Overall Effect by Intensity
GMW Tercile 1 x Post 2.517 0.431
(2.014) (0.399)
[-1.435, 6.470] [-0.352, 1.213]
GMW Tercile 2 x Post 1.852 0.416
(1.973) (0.335)
[-2.020, 5.725] [-0.241, 1.073]
GMW Tercile 3 x Post -1.062 0.271
(1.963) (0.316)

[-4.915, 2.791]

Panel B: Heterogeneity by Intensity

[-0.350, 0.892]

GMW Tercile 1 x Post x Science-Based 14.408 4,181
(6.730) (2.495)
[1.202, 27.614] [-0.714, 9.076]
GMW Tercile 2 x Post x Science-Based 5.410 2.820
(5.462) (2.052)
[-5.309, 16.128] [-1.207, 6.848]
GMW Tercile 3 x Post x Science-Based 1.085 3.261
(5.682) (1.936)
[-10.065, 12.236] [-0.539, 7.061]
GMW Tercile 1 x Post x Other Tech 0.583 -0.172
(2.032) (0.211)
[-3.405, 4.570] [-0.587, 0.242]
GMW Tercile 2 x Post x Other Tech 1.317 0.040
(2.080) (0.222)
[-2.764, 5.398] [-0.395, 0.475]
GMW Tercile 3 x Post x Other Tech -1.440 -0.194
(2.075) (0.215)
[-5.513, 2.632] [-0.615, 0.228]
Year x CPC Section FE Y Y
Year x Vintage Tercile FE Y Y
Technologies 977 977
N 59,597 59,597

Note: This table examines heterogeneity by exposure intensity among technologies that had any GMW
exposure before 1895. Treated technologies are divided into exposure terciles based on GMW patent share.
The specification follows Equation 10 but replaces the binary exposure indicator with tercile indicators.
The dependent variables are patents (column 1) and breakthrough patents (column 2). Standard errors
clustered at the technology level are shown in parentheses. 95 percent confidence intervals are reported
in square brackets.

59



Table F5: Effect of Consolidation on Emerging technologies—Intensity of Exposure

Outcome: First Patent First Breakthrough

Panel A: Overall Effect

In(GMWexposure) 1.003 1.063
(0.050) (0.098)

[0.911, 1.105]

Panel B: Heterogeneity

[0.888, 1.272]

In(GMWexposure) x Science-Based 1.098 1.110
(0.102) (0.166)
[0.916, 1.317] [0.827, 1.489]
In(GMWexposure) x Other Tech 0.951 1.008
(0.051) (0.093)
[0.856, 1.056] [0.842, 1.208]
Controls Y Y
Groups 1,696 1,696
Subclasses 237 237
N 48,145 65,701

Note: This table reports hazard ratios from the Cox proportional hazard model in Equation 11, but it
restricts to exposed technologies and replaces the binary indicator for exposure with an intensive exposure
measure: the logarithm of the share of pre-1895 GMW patents in the given CPC subclass. Panel A
shows overall effects; Panel B shows heterogeneity by science-based (CPC sections C, G, H) versus other
technologies. Hazard ratios above one indicate accelerated emergence; ratios below one indicate delayed
emergence. Standard errors clustered at the subclass level are shown in parentheses. 95 percent confidence
intervals are reported in square brackets.
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Table F6: Effect of Consolidation on Emerging Technologies—No Vintage Control

Outcome: First Patent First Breakthrough

Panel A: Overall Effect

GMW 1.086 0.888
(0.073) (0.104)

[0.952, 1.240]

Panel B: Heterogeneity

[0.706, 1.116]

GMW x Science-Based 1.117 0.982
(0.124) (0.142)
[0.898, 1.390] [0.739, 1.303]
GMW x Other Tech 1.057 0.700
(0.079) (0.093)
[0.914, 1.223] [0.539, 0.909]
CPC Class FE Y Y
Groups 2,898 2,898
Subclasses 474 474
Vintage N N
N 84,109 109,995

Note: This table reports hazard ratios from Cox proportional hazards models excluding vintage controls
from the baseline emerging technology specification (Equation 11). The baseline specification includes
controls for the earliest year any pre-1895 patent appeared in each group’s subclass (EarliestYearg). This
robustness check removes this vintage control while maintaining CPC class fixed effects and section-
specific baseline hazards. The sample includes CPC groups with no patents before 1895. Panel A shows
overall effects; Panel B shows heterogeneity by science-based versus other technologies. Hazard ratios
above one indicate accelerated emergence; ratios below one indicate delayed emergence. Standard errors
clustered at the subclass level are shown in parentheses. 95 percent confidence intervals are reported in
square brackets.
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F1 Implied causal effect of the GMW

To assess the overall magnitude of the Great Merger Wave’s impact on American tech-
nological development, I perform back-of-the-envelope calculations to estimate the total
effect on breakthrough innovations attributable to consolidation, across both established
and emerging technology domains.

The approach differs between established and emerging technologies due to data
structure constraints. For established technologies, I directly apply the difference-in-
differences coefficients from Table 6 to the number of technology-year observations ex-
posed to consolidation during 1905-1940. Specifically, I multiply the estimated treatment
effects by the corresponding number of exposed observations in each category. This
yields the total number of breakthrough innovations added or lost due to GMW expo-
sure over the sample period.

For emerging technologies, the survival analysis framework precludes direct extrapo-
lation of breakthrough counts from hazard ratios. The Cox proportional hazards model
estimates the relative likelihood of first breakthrough occurrence but does not readily
translate into absolute numbers of missed or accelerated innovations. To address this
limitation, I estimate a complementary regression specification that mirrors the iden-
tification strategy of the survival analysis while providing interpretable coefficients in
levels. The specification includes CPC class fixed effects, vintage-by-year fixed effects,
and CPC section-by-year fixed effects, capturing the same sources of variation as the Cox
model. Formally, for CPC group g in calendar year ¢, I estimate:

ngsmt = ,35 SEng + ,BO OEng + Yk + Vim + Ots + Egksmts (F1)

where By is the number of breakthrough patents in group g (in class k in section s)
and year t, v, are CPC class fixed effects, vy, are vintage by year fixed effects, and oy,
are CPC section by year fixed effects. SExp, and OExp, are exposure indicators equal
to one if group g belongs to a subclass exposed to consolidation and falls, respectively,
in science-based sections (C, G, H) or in other sections (A, B, D, E, F, Y). Standard errors
are clustered at the subclass level. The sample is restricted to t € [1905,1940] and to
CPC classes with within-class variation in exposure (as in the Cox model). This regres-
sion essentially captures the average difference in the number of breakthroughs between
exposed and unexposed groups, conditional on the controls outlined before.

The aggregate results, presented in Table F7, reveal that consolidation exposure
accounts for approximately 13,047 breakthrough innovations during 1905-1940, repre-
senting a 13.2 percent increase relative to the counterfactual without the Great Merger
Wave. This aggregate effect masks substantial heterogeneity across technological do-
mains. Among science-based technologies, GMW exposure generated 16,080 additional
breakthroughs, constituting a 30.3 percent increase above counterfactual levels. In con-
trast, non-science-based domains experienced a net reduction of 3,033 breakthroughs,
representing a 6.7 percent decline.
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Table F7: Net Breakthrough Innovations Attributable to the Great Merger Wave

Science-Based Other Total
(1) () 3)

Established 10,874 -2,321 8,553
(29.4%) (-5.4%) (10.7%)

Emerging 5,206 -713 4,493
(32.3%) (-28.5%) (24.1%)

Total 16,080 -3,033 13,047
(30.3%) (-6.7%) (13.2%)

Note: This table reports the estimated net number of breakthrough innovations attributable to Great
Merger Wave exposure during 1905-1940. For established technologies, effects are calculated by multi-
plying difference-in-differences coefficients from Table 6 by the number of exposed technology-year ob-
servations. For emerging technologies, effects are estimated using a complementary linear regression
specification that mirrors the identification strategy of the survival analysis in Table 7. Science-based
technologies encompass CPC sections C, G, and H (chemistry, metallurgy; scientific instruments, comput-
ing; electronics, telecommunications). Numbers in parentheses show the percentage change relative to
the counterfactual scenario without GMW exposure, calculated as the net effect divided by the implied
baseline (observed total minus net effect).
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